Система подачи воздуха в двигатель: бензиновый и дизельный мотор

Аналогичная система питания воздухом применяется на дизелях СМД-23/24.

Система очистки воздуха. Для очистки всасываемого в цилиндры воздуха на дизелях СМД-31 и СМД-23/24 предусмотрена трехступенчатая система. Исключение составляют дизели СМД-23.02 и СМД-24.02 корнеуборочных машин, где применена двухступенчатая система очистки воздуха.

  • Система подачи воздуха в двигатель: бензиновый и дизельный мотор
  • Система подачи воздуха в двигатель: бензиновый и дизельный мотор
  • В трехступенчатую систему очистки входят вращающийся воздухозаборник, инерционный предочиститель и воздухоочиститель.

Вращающийся воздухозаборник установлен на входном патрубке инерционного предочистителя и крепится стяжным хомутом.

Он представляет собой цилиндрическую сетку, к одному краю которой приварена крышка, в другой завальцована крыльчатка, предохраняющая от попадания пожнивных масс через зазор между сеткой и поддоном. К фланцу болтами прикреплена крышка с сеткой.

Фланец установлен на оси, вращающейся в подшипниках. На нижней части оси закреплена турбина. Для смазывания подшипников применяется тугоплавкая смазка.

Инерционный предочиститель закреплен на капоте комбайна и соединяется с входным патрубком воздухоочистителя с помощью резинового компенсатора и стяжных хомутов. Инерционный предочиститель с эжекционным удалением отсепарированной пыли состоит из цилиндрического корпуса, внутри которого приварены завихрительб и отражатель.

Клапан эжектора закреплен на капоте комбайна и с помощью шлангов и стяжных хомутов подсоединен к отсосной трубке эжектора и отсосной трубке инерционного предочистителя. Клапан эжектора состоит из цилиндрического корпуса, внутри которого находится клапан.

На неработающем дизеле клапан закрыт. При работе дизеля в результате разрежения со стороны эжектора и давления воздуха со стороны инерционного предочистителя клапан открыт.

В случае снижения давления на всасывании клапан закрывается, предохраняя воздухоочиститель от загрязнения выпускными газами.

Воздухоочиститель закреплен на капоте комбайна и соединен с турбокомпрессором через впускную трубу с помощью компенсатора, шланга и стяжных хомутов.

Воздухоочиститель представляет собой сварной корпус, в котором на шпильках установлены и закреплены гайками-барашками 8 две секции фильтров-патронов. На дизелях СМД-23/24 одна секция.

Каждая секция состоит из основного и предохранительного фильтров-патронов.

  1. Система подачи воздуха в двигатель: бензиновый и дизельный мотор
  2. Система подачи воздуха в двигатель: бензиновый и дизельный мотор
  3. Система подачи воздуха в двигатель: бензиновый и дизельный мотор
  4. Система подачи воздуха в двигатель: бензиновый и дизельный мотор
  5. Система подачи воздуха в двигатель: бензиновый и дизельный мотор
  6. Система подачи воздуха в двигатель: бензиновый и дизельный мотор
  7. Система подачи воздуха в двигатель: бензиновый и дизельный мотор

Основной фильтр-патрон состоит из наружной и внутренней сеток, бумажной фильтрующей шторы, находящейся внутри сеток, и донышек, скрепленных герметично эпоксидной смолой. Конструкция предохранительного патрона аналогична.

Очистка воздуха происходит следующим образом.

Воздух под действием разрежения, создаваемого турбокомпрессором, через сетку воздухозаборника направляется в трубу поступая на лопатки воздушной турбины, приводит во вращение вал. Через фланец вращение передается сетке. С поверхности заборной сетки частицы пожнивной массы и пыли сбрасываются центробежной силой. Сетка самоочищается.

Из воздухозаборника воздух по входному патрубку попадает внутрь корпуса инерционного предочистителя. Пройдя через завихритель, воздух приобретает вращательное движение. Частицы пыли под действием центробежной силы сбрасываются к стенке корпуса предочистителя и через зазор между стенкой корпуса и отражателем опускаются на дно корпуса. Из корпуса пыль по отсосной трубке (см.

рис. 37), соединенной через обратный клапан с трубкой эжектора, уносится вместе с отработавшими газами в атмосферу. Предварительно очищенный воздух через патрубок поступает в воздухоочиститель. Проходя последовательно через фильтры-патроны (основной и предохранительный), воздух окончательно очищается от пыли. По выходному патрубку и впускной трубеон поступает в турбокомпрессор.

На дизелях СМД-23.02 и СМД-24.02 предусмотрена двухступенчатая очистка воздуха – моноциклон с удалением пыли через выбросные щели и воздухоочиститель.

https://www.youtube.com/watch?v=RhF7IB0wmfU\u0026pp=ygV30KHQuNGB0YLQtdC80LAg0L_QvtC00LDRh9C4INCy0L7Qt9C00YPRhdCwINCyINC00LLQuNCz0LDRgtC10LvRjDog0LHQtdC90LfQuNC90L7QstGL0Lkg0Lgg0LTQuNC30LXQu9GM0L3Ri9C5INC80L7RgtC-0YA%3D

Воздухоочиститель этих дизелей состоит из корпуса, внутри которого с помощью шпильки и гаек с шайбами закреплены два фильтра-патрона: основной и предохранительный.

Фильтры-патроны V-типоразмера или всех дизелей типов СМД-31 и СМД-23, СМД-24 унифицированы: основной – 60-12029.00, предохранительный – 60-12028.00.

Турбокомпрессор. На дизелях СМД-31 и СМД-23/24 установлен турбокомпрессор, использующий энергию выпускных газов для наддува воздуха в цилиндры. Различные модификации этих турбокомпрессоров имеют разные габариты, отличаются конструкцией отдельных элементов и поэтому не взаимозаменяемы.

На рисунке 45 приведена конструкция турбокомпрессора ТКР8,5С-1. Конструкция других модификаций аналогична. Принцип действия турбокомпрессора следующий.

Горячие газы из цилиндров под давлением поступают по выпускному коллектору в камеру газовой турбины, а оттуда направляются на лопатки колеса турбины.

Расширяясь, газы вращают колеса турбины с валом, на другом конце которого находится колесо турбокомпрессора. Из турбины отработавшие газы выходят в атмосферу.

  • Система подачи воздуха в двигатель: бензиновый и дизельный мотор
  • Центробежный компрессор засасывает воздух через воздухоочис титель, сжимает его и подает под давлением через воздухо-воздушный радиатор и впускной коллектор в цилиндры дизеля.
  • Техническое обслуживание системы питания воздухом. Для обеспечения надежной работы системы питания воздухом в процессе эксплуатации необходимо соблюдать следующие правила: – не допускать попадания воды в воздухоочиститель при мойке дизеля; – для предохранения фильтров-патронов от загрязнения продуктами сгорания работа дизеля в закрытом помещении запрещается; – не допускать работу дизеля с загрязненными выше нормы фильтрами-патронами из-за увеличения расхода картерного масла и выхода из строя масляного уплотнения турбокомпрессора; – при проведении сварочных работ на деталях воздухоочистителя удалять из корпуса фильтры-патроны, так как искры и раскаленные капли металла могут привести к их возгоранию; – не допускать вращения коленчатого вала дизеля в противоположную сторону, так как это приводит к замасливанию и засорению продуктами сгорания фильтров-патронов; – не допускать разгерметизации системы питания воздухом до турбокомпрессора и после него, так как это может привести в первом случае к подсосу неочищенного воздуха, во втором – к снижению мощности дизеля, обильному дымлению из-за утечки воздуха;
  • – своевременно проводить техническое обслуживание составных частей системы питания воздухом.
  • Техническое обслуживание трех- и двухступенчатой систем питания воздухом дизелей СМД-31 и СМД-23/24 заключается в следующем: – через каждые 60 моточасов (при ТО-1) очистить щели колпака и защитной сетки моноциклона, обдуть сжатым воздухом или промыть основной фильтр-патрон воздухоочистителя; – через каждые 240 моточасов обдуть или промыть предохранительный фильтр-патрон воздухоочистителя и смазать подшипники вращающегося воздухозаборника (дозаправить 8…10 г смазки Литол-24);

– через каждые 480 моточасов заменить основной фильтр-патрон воздухоочистителя. Проведение этой работы рекомендуется при подготовке к уборочному сезону.

Последовательность операции по обслуживанию воздухоочистителя (на примере дизеля СМД-31) следующая: – отверните гайки-барашки и снимите крышки обеих секций; – отверните гайки-барашки и выньте из корпуса основные фильтры-патроны;

– продуйте основные фильтры-патроны сжатым воздухом сначала внутри, а затем снаружи до полного удаления пыли.

Во избежание прорыва бумажной шторы давление воздуха должно быть не более 0,2…0,3 МПа (2…3 кгс/см2). При этом струю воздуха следует направлять под углом к боковой поверхности фильтра-патрона и регулировать давление воздуха изменением расстояния от наконечника шланга до поверхности фильтра-патрона.

При отсутствии сжатого воздуха, а также в случае замасливания или загрязнения продуктами сгорания основные фильтры-патроны необходимо погрузить на 2 ч в моющий раствор, после чего интенсивно прополоскать в воде (температура 35…45 °С) и просушить в течение 24 ч.

Промывать фильтры-патроны следует также в том случае, когда продувкой сжатым воздухом они не восстанавливаются. Моющий раствор приготавливают из мыльной пасты ОП-7 или ОП-Ю (ГОСТ 8433-81) и воды, нагретой до 40…45°С (20 г пасты на 1 л воды).

Допускается использовать для промывки фильтров-патронов стиральный порошок или пасту, а также хозяйственное мыло, измельченное и растворенное в теплой воде (100 г мыла на 10 л воды).

Мыльный раствор необходимо отфильтровать. Запрещается продувать основные фильтры-патроны выпускными газами или промывать в дизельном топливе;
отверните гайки-барашки и выньте из корпуса предохранительные фильтры-патроны.

Обслуживание фильтров-патронов следует проводить осторожно, чтобы не повредить их.

https://www.youtube.com/watch?v=RhF7IB0wmfU\u0026pp=YAHIAQE%3D

Обслуживание предохранительных фильтров-патронов с бумажной фильтрующей шторой аналогично основным фильтрам-патронам.

Воздухоочиститель собирают в последовательности, обратной разборке. При этом проверяют состояние уплотнительных колец. Основные фильтры-патроны и фильтрующие элементы предохранительных фильтров-патронов в случае повреждения заменяют из комплекта ЗИП.

Убедитесь в правильности установки фильтров-патронов в корпусе и надежно затяните гайки-барашки. Во избежание повреждения фильтров-патронов не производите чрезмерную затяжку гаек.

  1. В случае повышения расхода картерного масла из-за износа или залегания уплотнительных колец турбокомпрессора последний необходимо снять с дизеля для полной разборки.
  2. Турбокомпрессор разбирают в следующем порядке: – отверните две гайки и отсоедините от турбокомпрессора трубку слива масла; -отверните гайки, снимите шайбы и отсоедините корпус компрессора от среднего корпуса; – отогните буртики замковых шайб, отверните гайки, снимите замковые шайбы, планки и отсоедините корпус турбины от среднего корпуса. Во избежание повреждения лопаток при разборке и сборке турбокомпрессора не ставьте средний корпус в сборе с ротором на колесо турбины или компрессора; – отверните специальную гайку, придерживая вал ключом за грани на хвостовике колеса турбины, и снимите колесо компрессора; – выньте из среднего корпуса колесо турбины с валом, осторожно постукивая деревянным молотком через проставку по торцу вала со стороны компрессора;
  3. – выньте маслоотражатель из диска уплотнения компрессора; выньте уплотнительные кольца из канавок маслоотражателя и втулки уплотнения.
  4. Турбокомпрессор собирают в такой последовательности: – очистите деревянным скребком от нагара, промойте в чистом дизельном топливе и продуйте сжатым воздухом все детали турбокомпрессора; – установите новые уплотнительные кольца в канавки втулки уплотнения, после чего проверните кольца в канавках так, чтобы замки колец были обращены в противоположные стороны; – смажьте вал ротора чистым моторным маслом и установите ротор в средний корпус турбокомпрессора; – установите на маслоотражатель уплотнительное кольцо; – затем маслоотражатель – в диск уплотнения; – установите колесо компрессора на вал ротора, совместив метки на валу и колесе компрессора;
  5. – закрепите колесо компрессора на валу ротора специальной гайкой, затянув ее до совпадения меток на гайке и валу ротора.
  6. После сборки среднего корпуса турбокомпрессора проверьте легкость и плавность вращения ротора в подшипнике, а также осевое перемещение ротора, которое должно быть в пределах 0,16…0,25 мм.
  7. Дальнейшую сборку турбокомпрессора производите в порядке, обратном разборке.
Читайте также:  Технические характеристики автокрана кс-3577

Система подачи воздуха в двигатель: устройство воздухозаборника и его назначение

Принцип действия двигателя внутреннего сгорания заключается в преобразовании тепловой энергии сгоревшего топлива в механическую.

Для этого в камеру сгорания поступает горючая смесь, состоящая из топлива и воздуха, а затем воспламеняется. Оптимальное соотношение компонентов обеспечивает получение максимальных динамических характеристик.

За забор и впуск воздуха в цилиндры двигателя отвечает соответствующая система питания.

Основные системы наддува

Система подачи воздуха в двигатель: бензиновый и дизельный мотор

Независимо от конструкции, воздух в двигатель попадает из атмосферы. Это актуально как для бензиновых, так и дизельных модификаций. В общем случае в схему входят:

  • воздухозаборник;
  • фильтр;
  • впускной патрубок;
  • турбокомпрессор;
  • дроссельная заслонка (для бензиновых двигателей);
  • промежуточный радиатор;
  • впускной коллектор.

Турбокомпрессором (турбиной) оснащают дизельные моторы, но принудительным наддувом оборудуют также и работающие на бензине. Наддув позволяет силовому агрегату развить более высокую мощность за счёт генерации большего давления.

Система подачи воздуха на бензиновых двигателях

Система подачи воздуха в двигатель: бензиновый и дизельный мотор

Конструкция систем питания воздухом моторов любых моделей принципиальных отличий не имеет. Первый элемент — воздухозаборник, компонент двигателя, который отвечает за сообщение с атмосферой. Его устанавливают под капотом так, чтобы эффективно забирать воздушные массы на всех скоростных режимах. Раструб воздухозаборника закреплён корпусом головной оптики с правой или с левой стороны авто, около радиаторной решётки.

После попадания в заборник поток движется в фильтр. Это обязательный компонент воздушной системы двигателя, отвечающий за очистку потока от пыли.

Если мельчайшие частицы из атмосферы будут беспрепятственно поступать в ДВС, начнётся интенсивный износ стенок цилиндров, что приведёт к поломке мотора. Фильтр очистки поступающего воздуха включает фильтрующий элемент и корпус.

Устанавливают его в подкапотном пространстве недалеко от воздухозаборника, к корпусу авто крепят через резиновые демпферы.

Миновав фильтр, воздушный поток попадает во впускной патрубок. Это соединительная труба, предназначенная для дистанцирования элементов системы. В нижней части патрубка делают «ловушку» для воды. Это небольшое углубление, куда стекает жидкость, попавшая в устройство для подачи воздуха после преодоления глубоких луж.

Регулирует обороты коленвала дроссельная заслонка. Механизм напрямую связан с педалью акселератора, при нажатии на которую увеличивается воздушный поток. В корпусе дросселя расположен регулятор холостых оборотов и датчик положения заслонки. Первый отвечает за поддержание минимального вращения коленвала, второй — передаёт информацию блоку управления о степени открытия механизма.

После дроссельной заслонки поток попадает во впускной коллектор. Это последняя деталь в схеме на пути подачи воздуха в цилиндры. Делают его из металла (сплава на основе алюминия) или пластика. Коллектор отвечает за формирование горючей смеси, которая в дальнейшем попадает в камеру сгорания. Впрыск горючего осуществляют инжекторы, установленные непосредственно в корпусе детали.

Система подачи воздуха в дизельный двигатель

Система подачи воздуха в двигатель: бензиновый и дизельный мотор

Компоновка мотора, работающего на солярке, от бензинового практически не отличается. В схеме питания отсутствует дроссельная заслонка, установлен турбокомпрессор и реализован более сложный принцип формирования топливной смеси. В двигатель с дизельной аппаратурой и турбиной воздушный поток попадает через заборник, который представляет собой полный аналог элемента бензинового мотора. Очистка воздушной массы также происходит в фильтре. Однако для силовых агрегатов, устанавливаемых на спецтехнику, предусмотрена многоступенчатая фильтрация. В условиях сильной запылённости используют инерционный предварительный очиститель и другие подобные решения.

После фильтра воздушные массы попадают в центробежный нагнетатель. Турбина работает за счёт энергии отработанных газов и предназначена для генерации большего крутящего момента. Поток, проходя через нагнетатель, нагревается. Для его охлаждения предусмотрен промежуточный теплообменник — интеркулер. Элемент позволяет незначительно повысить мощность ДВС по сравнению с базовыми характеристиками.

Последний элемент системы — коллектор. В отличие от бензинового, в дизельном нет дроссельного узла, а воздух беспрепятственно попадает в цилиндры. Генерация крутящего момента регулируется количеством впрыскиваемого топлива.

Однако в современных моторах заслонка всё же есть, но выполняет она другую функцию. Совместно с клапаном EGR она способна улучшить экологические показатели мотора на переходных режимах работы.

Снижение токсичности выхлопных газов происходит за счёт повторного их использования при формировании горючей смеси.

Как увеличить подачу воздуха в двигатель

От количества и качества поступающих в мотор воздушных масс зависят его эксплуатационные характеристики. Для генерации большей мощности владельцы авто пытаются увеличить подачу воздуха. Для этого в конструкцию силового агрегата вносят изменения. Установка модернизированной системы питания позволяет получить несколько дополнительных лошадиных сил.

Наиболее простой и бюджетный способ — установка фильтра нулевого сопротивления взамен штатного. Однако этот метод используют на спортивных и специально подготовленных авто. Для стоковых двигателей прирост мощности будет минимален, а расходы на более частую замену фильтрующего элемента существенно возрастут.

Часто повышают крутящий момент за счёт доработки штатной системы подачи воздуха. Способ подразумевает комплексный подход к модернизации. В первую очередь измеряют местные сопротивления движению потока, затем меняют конфигурацию воздухозаборника, корпуса фильтра, впускного патрубка так, чтобы движению воздуха ничего не мешало.

Существенно повысить «резвость» атмосферного мотора позволяет электрический нагнетатель. Монтаж турбины осуществляют во впускной патрубок. В результате улучшается общий процесс смесеобразования, мощность двигателя растет, повышается эластичность во время работы ДВС на разных режимах, автомобиль демонстрирует улучшенные динамические характеристики.

Увеличить поступление воздушных масс позволяет вынос воздухозаборника из подкапотного пространства. «Холодный впуск» обеспечивает снижение температуры в коллекторе, а также незначительное повышение давления во время движения. Однако вынос воздухозаборника сопряжён с риском попадания в него воды, что может привести к гидроудару и поломке двигателя.

Система питания двигателя — сложный компонент, исправность которого обеспечивает нормальное функционирование силового агрегата. Для улучшения динамических характеристик возможен тюнинг отдельных элементов, отвечающих за подачу воздуха в цилиндры.

О системе подачи воздуха

Впускная система (другое наименование – система подачи воздуха) предназначена для впуска в двигатель необходимого количества воздуха и образования топливно-воздушной смеси.

Термин «впускная система» появился с развитием конструкции двигателей внутреннего сгорания, особенно с появлением системы непосредственного впрыска топлива.

Оборудование для питания двигателя воздухом перестало быть просто воздуховодом, а превратилось в отдельную систему.

В своей работе система впуска взаимодействует со многими системами двигателя, в том числе с системой впрыска, системой рециркуляции отработавших газов, системой улавливания паров бензина, вакуумным усилителем тормозов. Взаимодействие перечисленных систем и еще ряда других систем обеспечивает система управления двигателем.

Для улучшения наполнения цилиндров воздухом, повышения мощности в конструкции системы впуска современных бензиновых и дизелных двигателей используется турбонаддув.

Читайте также:  Какое масло лучше: синтетика или полусинтетика

Конструкция впускной системы включает воздухозаборник, воздушный фильтр, дроссельную заслонку, впускной коллектор. на отдельных конструкциях двигателей используются впускные заслонки. Все элементы впускной системы соединены патрубками.

Схема впускной системы: 1-воздушный фильтр,2-расходомер воздуха,3-адсорбер,4-запорный клапан системы улавливания паров бензина,5-блок управления дроссельной заслонкой,6-датчик давления во впускном коллекторе,7-клапан управления впускными заслонками,8-вакуумный привод впускных заслонок,9-датчик положения впускной заслонки,10-датчик давления в магистрали вакуумного усилителя тормозов,11-клапан системы рециркуляции отработавших газов,12-блок управления системы управления двигателем.

Воздухозаборник обеспечивает забор воздуха из атмосферы и представляет собой патрубок определенной формы.

Воздушный фильтр служит для очистки воздуха от механических частиц. Фильтрующий элемент изготавливается из специальной бумаги и размещается в отдельном корпусе. Фильтрующий элемент воздушного фильтра является расходным материалом, т.е. имеет ограниченный срок службы. В зависимости от условий эксплуатации автомобиля срок службы фильтрующего элемента может изменяться.

Дроссельная заслонка регулирует величину поступающего воздуха в соответствии с величиной впрыскиваемого топлива. На современных двигателях дроссельная заслонка приводится в действие с помощью электродвигателя и не имеет механической связи с педалью газа.

Впускной коллектор распределяет поток воздуха по цилиндрам двигателя и придает ему необходимое движение. Разряжение, возникаемое во впускном коллекторе используется в работе вакуумного усилителя тормозов, а также для привода впускных заслонок.

На двигателях с непосредственным впрыском топлива в дополнение к дроссельной заслонке устанавливаются впускные заслонки.

Они обеспечивают процесс смесеобразования за счет разделения воздуха на два впускных канала. Один канал перекрывает заслонка, через другой – воздух проходит безпрепятственно.

Впускные заслонки установлены на общем валу, который поворачивается с помощью вакуумного или электрического привода.

Работу впускной системы обеспечивает система управления двигателем. Конструктивные элементы системы управления двигателем, которые используются в работе системы впуска, можно разделить на три группы: входные датчики, блок управления иисполнительные устройства.

К примеру, впускная система двигателя с непосредственным впрыском топлива имеет следующие входные датчики: расходомер воздуха, температуры воздуха на впуске, положения дроссельной заслонки, давления во впускном коллекторе, положения впускной заслонки, положения клапана рециркуляции, давления в магистрали вакуумного усилителя тормозов.

Расходомер воздуха и датчик температуры воздуха на впуске служат для определения нагрузки на двигатель. На некоторых моделях двигателей расходомер воздуха не устанавливается. Его функции выполняет датчик давления во впускном коллекторе. При совместной установке расходомер воздуха и датчик давления во впускном коллекторе дублируют друг друга.

Датчик давления во впускном коллекторе также используется в работе системы рециркуляции отработавших газов для расчета количества перепускаемых газов. Величина нагрузки двигателя определяется с помощью датчика температуры воздуха на впуске и дополнительного датчика атмосферного давления. Остальные датчики обеспечивают работу соответствующих систем.

Работой впускной системы управляют следующие исполнительные устройства:

  • блок управления дроссельной заслонкой;
  • электродвигатель привода впускных заслонок или клапан управления вакуумным приводом заслонок (на двигателе с непосредственным впрыском топлива);
  • запорный клапан системы улавливания паров бензина;
  • электромагнитный клапан системы рециркуляции отработавших газов.

Исполнительные устройства активирует блок управления двигателем.

Принцип работы впускной системы

Работа впускной системы основана на разности давлений в цилиндре двигателя и атмосфере, возникающей на такте впуска. Объем поступающего воздуха при этом пропорционален объему цилиндра. Величина поступающего воздуха регулируется положением дроссельной заслонки в зависмости от режима работы двигателя.

На двигателях с непосредственным впрыском топлива в дополнение к дроссельной заслонке работают впускные заслонки. Совместная работа дроссельной и впускных заслонок обеспечивает несколько видов смесеобразования:

  • послойное смесеобразование;
  • бедное гомогенное смесеобразование;
  • стехиометрическое гомогенное смесеобразование.

Послойное смесеобразование используется при работе двигателя на малых и средних оборотах и нагрузках. При послойном смесеобразовании дроссельная заслонка большую часть времени открыта полностью.

Заслонка прикрывается только для обеспечения разряжения, необходимого в работе системы улавливания паров бензина (продувка адсорбера), системы рециркуляции отработавших газов (перепуск отработавших газов во впускной коллектор) и вакуумного усилителя тормозов (создание необходимого разрежения). Впускные заслонки закрыты.

Стехиометрическое (легковоспламеняемое) гомогенное (однородное) смесеобразование применяется при высоких оборотах двигателя и больших нагрузках. Дроссельная заслонка открывается в соответствии с требуемым крутящим моментом. Впускные заслонки открыты.

На бедной гомогенной смеси двигатель работает в промежуточных режимах. Дроссельная заслонка открывается также в соответствии с требуемым крутящим моментом. Впускные заслонки закрыты.

Конструкция системы впуска, способы увеличения подачи воздуха

В процессе развития двигателя внутреннего сгорания появилась впускная система. Система впуска современного двигателя необходима для подвода воздуха к цилиндрам и образования там рабочей смеси.

Впускная система состоит из: воздухозаборника, воздушного фильтра, дроссельной заслонки, впускного коллектора. Ещё в системе присутствуют: соединительные патрубки и на некоторых двигателях — впускные заслонки.

Устройство впускной системы на примере двигателя К4М: 1 — воздухозаборный патрубок; 2 — глушители шума впуска; 3 — корпус воздушного фильтра; 4 — блок дроссельной заслонки; 5 — впускной коллектор; 6 — подкладка корпусов форсунок; 7 — забор воздуха.

Воздухозаборник — нужен для забора воздуха и подачи его к двигателю. Процесс забора происходит благодаря давлению, которое создается потоком встречного воздуха или благодаря разрежению, которое создается движением поршней в цилиндрах.

  Руководство по замене масла в вариаторе nissan x-trail

Воздушный фильтр выполняет роль очистителя поступающего воздуха от всяческих частиц. Сам элемент фильтра изготовляется из спецбумаги и имеет определенный срок службы. Воздушные фильтры могут иметь разную конструкцию — бывают цилиндрические, панельные, бескаркасные.

Дроссельная заслонка увеличивает или уменьшает подачу воздуха, в зависимости от величины поступающего топлива. Приводится в действие педалью газа, а на современных моторах работает с помощью электродвигателя.

Впускные заслонки имеют место быть на движках с непосредственным впрыском топлива. Они крепятся на одном валу, который приводится в движение электрическим или вакуумным приводом.

Впускной коллектор выполняет роль распределителя воздуха по цилиндрам двигателя.

Как работает система впуска

Система работает по причине разного давления между атмосферным и давлением в цилиндрах двигателя, которое возникает на такте впуска. Объем цилиндра и поступающего воздуха пропорционален. Дроссельная заслонка регулирует величину воздуха, необходимую для конкретного режима работы мотора.

  • Как работает система впуска: A — поток воздуха; B — поток отработавших газов; 1 — дроссельная заслонка (только на бензиновых двигателях); 2 — клапан рециркуляции отработавших газов; 3 — поступающие по системе рециркуляции отработавшие газы; 4 — воздух или топливо-воздушная смесь; 5 — впускной клапан.
  • Рекомендуем: 20 самых экономичных автомобилей
  • На двигателях, где установлены впускные заслонки, может быть несколько видов смесеобразования — это послойное, стехиометрическое гомогенное и бедное гомогенное.

Смесеобразование послойное — дроссельная заслонка в основном полностью открыта, а заслонки впускные закрыты. Рабочая смесь на этом режиме бедная, она применяется при работе двигателя на средних и малых оборотах и при нагрузках.

Стехиометрическое гомогенное смесеобразование — заслонки впускные открыты, а дроссельная заслонка открыта от требуемого крутящего момента. Это смесеобразование применяется при больших нагрузках и высоких оборотах двигателя.

  1. Смесеобразование бедное гомогенное — заслонки впускные закрыты, дроссельная заслонка открыта, а режим работы двигателя, так называемый промежуточный.
  2. (1 раз, оценка: 5,00 из 5)

В чём отличия между бензиновым и дизельным двигателем

На протяжении десятилетий автомобилисты спорят о том, какой двигатель внутреннего сгорания лучше — дизельный или бензиновый.

И хотя ничего плохого в спорах нет, ведь в них, как известно, рождается истина, парадоксально то, что очень часто участники дискуссии на самом деле не понимают объективных преимуществ и недостатков того или иного вида ДВС.

Дабы исправить эту ситуацию, сегодня мы разберём особенности конструкции и механику работы каждого из типов двигателей, сформировав полноценный список плюсов и минусов как дизельного мотора, так и бензинового. Это и расширит кругозор автомобилиста, и позволит подобрать оптимальный движок для конкретной цели.

Telegram-канал создателя Трешбокса про технологии

  • ⚠️ Важно: что бензиновые, что дизельные силовые агрегаты являются двигателями внутреннего сгорания — они используют энергию сгорания топлива в рабочей камере, преобразовывая её в механическую работу двигателя.
Читайте также:  Экскаватор ек 12

Перед тем, как изучать отличия между дизельным и бензиновым двигателями, стоит разобрать, из каких компонентов состоит двигатель внутреннего сгорания.

Дело в том, что «внутреннюю начинку» силовой установки можно условно разделить на два важнейших компонента — газораспределительный механизм (ГРМ) и кривошипно-шатунный механизм (КШМ), которые играют основную роль в процессе сгорания топлива.

Собственно, КШМ необходим для того, чтобы преобразовывать энергию от сгорания топлива во вращательно-механическую энергию, которая «крутит» колёса автомобиля, а ГРМ отвечает за подачу смеси в рабочие камеры для её подальшего сжигания.

Как работает бензиновый двигатель

Механика работы бензинового двигателя внутреннего сгорания на самом деле крайне простая и разделяется на четыре такта (двухтактные двигатели в автомобилях используются крайне редко):

  1. Впуск. Когда поршень достигает верхней мёртвой точки рабочей камеры, «кулачки» распределительного вала газораспределительного механизма (ГРМ) открывают впускные клапаны, наполняя рабочую камеру топливно-воздушной смесью (воздух и бензин) до тех пор, пока поршень не достигнет нижней мёртвой точки — в этот момент впускной клапан закрывается.
  2. Сжатие. Во втором такте поршень двигается из нижней мёртвой точки к верхней, сжимая топливно-воздушную смесь — из-за этого заметно повышается её температура. 
  3. Рабочий ход. Под конец предыдущего такта, когда поршень почти добрался до верхней мёртвой точки, сжатая и разогретая (вплоть до 500 °С) топливно-воздушная смесь поджигается искрой от свечи зажигания. Начинается процесс сгорания топлива, в ходе которого горючая смесь достигает температуры в 2200 °С, а давление в рабочей камере поднимается в среднем в три раза. Под давлением расширяющихся газов поршень двигается от верхней мёртвой точки к нижней, раскручивая коленчатый вал КШМ при помощи шатуна. Именно на этом такте и происходит преобразование тепловой энергии во вращательную механическую.
  4. Выпуск. На четвёртом такте газораспределительный механизм открывает выпускной клапан, а поршень, двигаясь от нижней мёртвой точки к верхней, выдавливает из рабочей камеры образовавшиеся там отработанные газы, после чего выпускной клапан закрывается — полный цикл работы ДВС завершён.
  • То есть, в рабочую камеру цилиндра подаётся топливо, которое сжимается и поджигается искрой (это очень важный момент), после чего поршень по действием газов толкает шатун, передавая вращение на коленчатый вал, а тот, условно говоря, на колёса автомобиля.
  • Несмотря на распространённое заблуждение, процесс работы дизельного двигателя ничем (почти) не отличается от бензинового собрата — здесь тоже четыре такта, за которые коленчатый вал делает два оборота, да и сами такты абсолютно те же. Но, конечно, есть нюансы:
  1. Впуск. На первом такте работы двигателя через впускной клапан в рабочую камеру цилиндра поступает воздух (без топливной смеси), тогда как поршень двигается от верхней мёртвой точки к нижней, условно «всасывая» воздух, после чего клапан закрывается.
  2. Сжатие. Во втором такте поршень двигается от нижней мёртвой точки к верхней, сжимая полученный воздух, тем самым значительно повышая его температуру (до 500 °С) и общее давление в рабочей камере сгорания. 
  3. Рабочий ход. Под конец предыдущего такта, когда поршень почти достиг верхней мёртвой точки, через форсунку в рабочую камеру впрыскивается дизельное топливо, которое от взаимодействия со сжатым воздухом повышенной температуры воспламеняется. В ходе данного процесса в камере образовываются газы, которые, собственно, выдавливают поршень обратно из верхней мёртвой точки в нижнюю, передавая вращение на коленчатый вал за счёт шатуна. Это, как и в бензиновом аналоге, основная движущая сила мотора.
  4. Выпуск. На данном этапе работы двигателя выпускной клапан открывается, а поршень, возвращаясь к верхней мёртвой точке, выталкивает из камеры сгорания отработанные газы, после чего выпускной клапан закрывается, завершая полный цикл работы ДВС.
  1. Если кратко — в камеру сгорания подаётся воздух, который сжимается с повышением температуры, после чего в этот сжатый воздух впрыскивается дизельное топливо, которое от повышенной температуры (ключевое отличие от бензинового двигателя) воспламеняется, а поршень, под действием газов, толкает шатун, преобразовывая тем самым энергию сгорания топлива в механическую энергию вращения коленчатого вала.
  2. Получается, что отличий в работе бензинового и дизельного моторов всего две:
  1. на этапе впрыска бензиновый двигатель закачивает в рабочую камеру воздух совместно с топливом, тогда как дизельный мотор на первом такте закачивает только воздух;
  2. в бензиновом моторе поджигание смеси происходит при помощи искры от свечи зажигания, а в дизельной силовой установке воспламенение происходит от впрыска дизельного топлива в нагретый при помощи сжатия воздух.

Преимущества и недостатки: объективные факты

Теперь, когда мы разобрались в том, как работает каждый из моторов, давайте изучим плюсы и минусы каждого из вариантов.

Несмотря на то, что бензиновые двигатели обычно могут похвастаться большей мощностью, КПД дизельного топлива заметно выше — на целых 40% по сравнению со своим прямым конкурентом. Более того, расход топлива у дизельного мотора в среднем на 20% меньше — именно из-за ездить на дизеле (если учитывать только расход топлива на 100 км хода) дешевле.

Хотя стоимость дизельного топлива, расходуемого в процессе езды, ниже, чем у бензина, расходы на обслуживание и содержание самого дизельного двигателя выше. Дело в том, что дизельный мотор нужно чаще обслуживать — менять фильтры, масла, проверять необходимую компрессию в цилиндрах.

Да и ремонт «дизеля», учитывая более сложную конструкцию, обычно выходит дороже.

С другой стороны, даже при учёте более дорогого обслуживания, в долгосрочной перспективе водители, которые проезжают за год от 15-20 тысяч километров, за счёт более низкого расхода топлива всё же немного экономят по сравнению с бензиновыми собратьями.

Есть тонкости эксплуатации, о которых многие автомобилисты даже не догадываются. Во-первых, дизельный мотор гораздо более прихотливый к качеству топлива, чем бензиновый.

Соответственно, если бензиновый ДВС можно заправлять где-угодно и практически чем-угодно (плохой бензин приводит к повышенному расходу, но минимальному урону по компонентам двигателя), то дизельный аналог лучше заправлять на проверенных заправках.

Во-вторых, дизель плохо дружит с низкими температурами — при -15-20 °С обычная топливная смесь густеет и не проходит через топливный фильтр. Значит, топливо нужно либо греть, либо использовать специальные сорта дизеля.

В-третьих, быстро согреться в дизельном авто не выйдет, так как прогревается он куда дольше — тепло в салон поступит минимум через 10 минут после запуска.

Из-за этого дизельные моторы в регионы с пониженными температурами обычно не приобретают.

С другой стороны, есть у дизельного мотора заметный плюс — этот мотор использует электричество только для старта, так что «дизеля» часто ставят на внедорожники, чтобы не бояться воды.

Дизельные моторы всегда более шумные и издают больше вибрации даже на холостых оборотах, чем бензиновые собратья — это вызвано тем, что сгорание топлива в рабочей камере происходит под большим давлением.

А так как производители редко комплектуют дизельные авто дополнительной шумоизоляцией, разница между двумя моделями транспортного средства на дизеле и бензине обычно слышна даже на большом расстоянии.

Зато у дизеля меньше выхлопных газов, так что такие автомобили легче получают сертификат стандарта «Евро-4» и выше, тогда как бензиновые авто приходится оборудовать дополнительными фильтрами, чтобы пройти аттестацию.

Нельзя сказать, что один тип мотора лучше, а другой хуже — это не совсем правильно. Просто они созданы для разных целей и задач.

Например, если вы за год проезжаете 15-20 тысяч километров, то дизельный двигатель позволит экономить на топливе, но нужно учитывать, что в холодных регионах могут возникнуть проблемы при низких температурах, да и топливо должно быть качественным.

Для города, небольшого пробега за год и пониженных температур бензиновый мотор будет более удобным и комфортным, ещё и в сервис для замены расходников обращаться будете реже. Достаточно определить задачу, которую вы ставите перед автомобилем, и исходя из этого выбирать тип двигателя.

Ссылка на основную публикацию
Adblock
detector