Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Все чаще звучат авторитетные мнения, что сейчас развитие двигателей внутреннего сгорания достигло наивысшего уровня и больше невозможно заметно улучшить их характеристики. Конструкторам остается заниматься ползучей модернизацией, шлифуя системы наддува и впрыска, а также добавляя все больше электроники. С этим не соглашаются японские инженеры. Свое слово сказала компания Infiniti, которая построила двигатель с изменяемой степенью сжатия. Разбираемся, в чем преимущества такого мотора, и какое у него будущее.

В качестве вступления напомним, что степенью сжатия называют отношение объема над поршнем, находящимся в нижней «мертвой» точке, к объему, когда поршень находится в верхней.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Для бензиновых двигателей этот показатель составляет от 8 до 14, для дизелей — от 18 до 23.

Степень сжатия задается конструкцией фиксировано. Рассчитывается она в зависимости от октанового числа применяемого бензина и наличия наддува.

Возможность динамически изменять степень сжатия в зависимости от нагрузки позволяет поднять КПД турбированного мотора, добившись того, чтобы каждая порция топливовоздушной смеси сгорала при оптимальном сжатии.

При малых нагрузках, когда смесь обедненная, используется максимальное сжатие, а в нагруженном режиме, когда бензина впрыскивается много и возможна детонация, мотор сжимает смесь минимально.

Это позволяет не регулировать «назад» угол опережения зажигания, который остается в наиболее эффективной позиции для снятия мощности. Теоретически система изменения степени сжатия в ДВС позволяет до двух раз уменьшить рабочий объем мотора при сохранении тяговых и динамических характеристик.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Схема двигателя с изменяемым объемом камеры сгорания и шатуны с системой подъема поршней

Одной из первых появилась система с дополнительным поршнем в камере сгорания, который перемещаясь, изменял ее объем. Но сразу возник вопрос о размещении еще одной группы деталей в головке блока, где уже и так теснились распредвалы, клапаны, инжекторы и свечи зажигания.

Притом нарушалась оптимальная конфигурация камеры сгорания, отчего топливо сжигалось неравномерно. Поэтому система так и осталась в стенах лабораторий. Не пошла дальше эксперимента и система с поршнями изменяемой высоты.

Разрезные поршни были чрезмерно тяжелыми, притом сразу возникли конструктивные трудности с управлением высотой подъема крышки.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Система подъема коленвала на эксцентриковых муфтах FEV Motorentechnik (слева) и траверсный механизм для изменения высоты подъема поршня

Другие конструкторы пошли путем управления высотой подъема коленвала. В этой системе опорные шейки коленвала размещены в эксцентриковых муфтах, приводимых в действие через шестерни электромотором.

Когда эксцентрики поворачиваются, коленвал поднимается или опускается, отчего, соответственно, меняется высота подъема поршней к головке блока, увеличивается или уменьшается объем камеры сгорания, и изменяется тем самым степень сжатия. Такой мотор показала в 2000 году немецкая компания FEV Motorentechnik. Система была интегрирована в турбированный четырехцилиндровый двигатель 1.

8 л от концерна Volkswagen, где варьировала степень сжатия от 8 до 16. Мотор развивал мощность 218 л.с. и крутящий момент 300 Нм. До 2003 года двигатель испытывался на автомобиле Audi A6, но в серию не пошел.

Не слишком удачливой оказалась и обратная система, также изменяющая высоту подъема поршней, но не за счет управления коленвалом, а путем подъема блока цилиндров. Действующий мотор подобной конструкции продемонстрировал в 2000 году Saab, и также тестировал его на модели 9-5, планируя запустить в серийное производство.

Получивший название Saab Variable Compression (SVC) пятицилиндровый турбированный двигатель объемом 1,6 л, развивал мощность 225 л. с.

и крутящий момент 305 Нм, при этом расход топлива при средних нагрузках снизился на 30%, а за счет регулируемой степени сжатия мотор мог без проблем потреблять любой бензин — от А-80 до А-98.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Система двигателя Saab Variable Compression, в которой степень сжатия изменяется за счет отклонения верхней части блока цилиндров

Задачу подъема блока цилиндров в Saab решили так: блок был разделен на две части — верхнюю с головкой и гильзами цилиндров, и нижнюю, где остался коленвал.

Одной стороной верхняя часть была связана с нижней через шарнир, а на другой был установлен механизм с электроприводом, который, как крышку у сундука, приподнимал верхнюю часть на угол до 4 градусов. Диапазон степени сжатия при поднимании — опускании мог гибко варьироваться от 8 до 14.

Для герметизации подвижной и неподвижной частей служил эластичный резиновый кожух, который оказался одним из самых слабых мест конструкции, вместе с шарнирами и подъемным механизмом. После приобретения Saab корпорацией General Motors американцы закрыли проект.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Проект МСЕ-5 в котором применен механизм с рабочим и управляющим поршнями, связаными через зубчатое коромысло

На рубеже веков свою конструкцию мотора с изменяемой степенью сжатия предложили и французские инженеры компании MCE-5 Development S.A. Показанный ими турбированный 1.5-литровый мотор, в котором степень сжатия могла варьироваться от 7 до 18, развивал мощность 220 л. с. и крутящий момент 420 Нм.

Конструкция тут довольно сложная. Шатун разделен и снабжен наверху (в части, устанавливаемой на коленвал) зубчатым коромыслом. К нему примыкает другая часть шатуна от поршня, оконечник которой имеет зубчатую рейку.

С другой стороной коромысла связана рейка управляющего поршня, приводимого в действие через систему смазки двигателя посредством специальных клапанов, каналов и электропривода. Когда управляющий поршень перемещается, он воздействует на коромысло и высота поднятия рабочего поршня изменяется.

Двигатель экспериментально обкатывался на Peugeot 407, но автопроизводитель не заинтересовался данной системой.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Теперь свое слово решили сказать конструкторы Infiniti, представив двигатель с технологией Variable Compression-Turbocharged (VC-T), позволяющей динамически изменять степень сжатия от 8 до 14.

Японские инженеры применили траверсный механизм: сделали подвижное сочленение шатуна с его нижней шейкой, которую, в свою очередь, связали системой рычагов с приводом от электромотора.

Получив команду от блока управления, электродвигатель перемещает тягу, система рычагов меняет положение, регулируя тем самым высоту подъема поршня и, соответственно, изменяя степень сжатия.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Конструкция системы Variable Compression у мотора Infiniti VC-T: а — поршень, b — шатун, с — траверса, d — коленвал, е — электродвигатель, f — промежуточный вал, g — тяга. 

За счет данной технологии двухлитровый бензиновый турбомотор Infiniti VC-T развивает мощность 270 л.с., оказываясь на 27% экономичнее других двухлитровых двигателей компании, имеющих постоянную степень сжатия. Японцы планируют запустить моторы VC-T в серийное производство в 2018 году, оснастив ими кроссовер QX50, а затем и другие модели.

Заметим, что именно экономичность выступает сейчас основной целью разработки моторов с изменяемой степенью сжатия. При современном развитии технологий наддува и впрыска, нагнать мощности в моторе для конструкторов не составляет больших проблем.

Другой вопрос: сколько бензина в супернадутом двигателе будет вылетать в трубу? Для обычных серийных моторов показатели расхода могут оказаться неприемлемы, что и выступает ограничителем для надувания мощности. Японские конструкторы решили этот барьер преодолеть.

Как считают в компании Infiniti, их бензиновый двигатель VC-T, способен выступить как альтернатива современным турбированным дизелям, показывая тот же расход топлива при лучших характеристиках по мощности и более низкой токсичности выхлопа.

Каков итог?

Работы над двигателями с изменяемой степенью сжатия ведутся уже не один десяток лет — этим направлением занимались конструкторы Ford, Mercedes-Benz, Nissan, Peugeot и Volkswagen. Инженерами исследовательских институтов и компаний по обе стороны Атлантики получены тысячи патентов. Но пока ни один такой мотор не пошел в серийное производство.

Не все гладко и у Infiniti. Как признаются сами разработчики мотора VC-T, у их детища пока остаются общие проблемы: возросла сложность и стоимость конструкции, не решены вопросы с вибрацией.

Но японцы надеются доработать конструкцию и запустить ее в серийное производство.

Если это произойдет, то будущим покупателям осталось только понять: сколько придется переплатить за новую технологию, насколько такой мотор будет надежен и сколько позволит экономить на топливе.

Система изменения степени сжатия ДВС: даже это стало возможным

Дорогие друзья! До чего только не додумаются люди ради того, чтобы быть свободными в своем выборе. Даже додумались и воплотили в жизнь двигатель с переменной степенью сжатия

Да, именно то, что казалось невозможно изменить после того как прикрутили головку блока. Но нет, оказывается можно, и даже несколькими способами.

Двигатель с переменной степенью сжатия. Суть изменения

В бензиновых двигателях значения степени сжатия в прямую связано с условиями детонации. Оно как правило возникает при нагрузках и зависит от качества бензина.

https://www.youtube.com/watch?v=UrmRsDrtY7o\u0026pp=ygV_0JTQstC40LPQsNGC0LXQu9GMINGBINC40LfQvNC10L3Rj9C10LzQvtC5INGB0YLQtdC_0LXQvdGM0Y4g0YHQttCw0YLQuNGPOiDQv9GA0LjQvdGG0LjQvyDRgNCw0LHQvtGC0Ysg0Lgg0L7RgdC-0LHQtdC90L3QvtGB0YLQuA%3D%3D

Двигатели с высоким КПД имеют высокие показатели степени сжатия, как следствие используют топливо с высокооктановым числом, менее подверженное к детонации при максимальных нагрузках.

Для поддержания мощностных характеристик двигателя в бездетонационном режиме логично снижать степень сжатия. Например, при резком разгоне или при движении на подъем, когда цилиндры максимально наполняются топливной смесью, выжимая из него все что он имеет.

Читайте также:  Телескопические погрузчики маниту

Тут бы и немного снизить степень сжатия, чтобы избежать детонацию, не снижая его мощности, которая сильно повышает износ поршневой группы двигателя.

При средних нагрузках, высокий уровень степени сжатия не провоцирует детонацию, степень сжатия высокая, КПД тоже, его мощность остается максимальной, за счет этого естественно повышается его экономичность.

Казалось бы, эту задачу можно решить просто, вдувать топливную смесь под разным давлением в камеру сгорания, по мере надобности.

Но вот незадача, при повышении таким способом степени сжатия, увеличиваются нагрузки на детали двигателя. Решать такие проблемы надо будет увеличением соответствующих деталей, что соответственно скажется на общей массе двигателя. При этом снижается надежность двигателя и соответственно его ресурс.

При переходе на изменяющуюся степень сжатия, процесс наддува можно так организовать, что при снижении степени сжатия, он будет обеспечивать максимально-эффективное давление при любом режиме работы.

При этом нагрузки на детали поршневого отдела двигателя будут не значительно увеличены, что позволит безболезненно форсировать двигатель без значительного увеличения его веса.

Понимая это, изобретатели и призадумались. И выдали. На чертеже ниже представлена самый распространенный вариант изменения степени сжатия.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

На высоких нагрузках, эксцентрик 3 смещает доп.шатун 4 влево, что смещает шатун 1 с поршнем 2 вниз. При этом зазор над поршнем 2 увеличивается, уменьшая степень сжатия.

Система от SAAB

Первыми воплотили мечту в жизнь инженеры фирмы SAAB и в 2000 году на выставке в Женеве выставили на всеобщее обозрение экспериментальный двигатель с системой Variable Compression.

Этот уникальный двигатель имел мощность в 225 л.с., при объеме 1,6 л., а расход топлива был в вдвое меньшим аналогичного объема. Но самое фантастичное, он мог работать и на бензине, и на спирте, и даже на дизельном топливе.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Изменение рабочего объема двигателя осуществлялось бесшагово. Степень сжатия изменялась при наклоне моноблока (совмещенная головка блока с блоком цилиндров) относительно блока-картера. Отклонение моноблока вверх приводило к уменьшению степени сжатия, отклонение вниз — к увеличению.

Смещение по вертикальной оси на 4 градуса, что позволило иметь сжатия от 8:1 до 14:1. Управление изменением степени сжатия, в зависимости от нагрузки, осуществлялось специальной электронной системой управления по средством гидропривода. При максимальной нагрузке СЖ 8:1, при минимальной 14:1.

Так же в нем применялся механический наддув воздуха, он подключался только при наименьших значениях степени сжатия.

Но не смотря на такие удивительные результаты, двигатель не пошел в серию, и работы по доводке на сегодняшний день свернуты по неизвестной нам причине.

VCR (Variable Compression Ratio)

Французы фирмы MCE-5 Development, для автоконцерна Пежо разработали принципиально новый двигатель VCR, с совершенно оригинальной кинематической схемой кривошипно-шатунного механизма.

МСЕ-5 Development, сделала для концерна «Пежо», тоже двигатель с переменной степенью сжатия VCR. Но в этом решении они применили оригинальную кинематику кривошипно-шатунного механизма.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

В нем передача движения от шатуна на поршень идет через зуб.сектор 5. Справа опорная зуб.рейка 7, на неё опирается сектор 5, так происходит возвратно-поступательное движение поршня, он соединен с рейкой 4. Рейка 7 соеденина с поршнем 6.

Сигнал поступает с блока управления, и в зависимости от режима работы двигателя, изменяется положение поршня 6, связанного с рейкой 7. Смещается рейка управления 7 вверх или вниз. Она изменяет положение НМТ и ВМТ поршня двигателя, и соответственно СЖ от 7:1 до 20:1. Если нужно, можно изменять положение каждого цилиндра отдельно.

Зубчатая рейка жестко скреплена с управляющим поршнем. В пространство над поршнем подается масло. Давлением масла и регулируется степень сжатия в основном рабочем цилиндре.

Соединительный рычаг 1, шестерня синхронизации 2, стойка поршня 3, рабочий поршень 4, выпускной клапан 5, головка блока цилиндров 6, впускной клапан 7, поршень управления 8, блок цилиндров 9, стойка поршня управления 10, зубчатый сектор 11.В данное время двигатель дорабатывается и вполне возможно появится в серии.

Lotus Omnivore Concept Engine

Еще есть одна разработка от Lotus Cars, это двухтактный двигатель Omnivore (всеядный). Назвали его так, потому что разработчики заявляют, что он тоже может работать на любом топливе.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Конструктивно он представляется так. Вверху цилиндра расположена шайба, управляемая эксцентриковым механизмом. Чем примечательна эта конструкция, она позволяет достигать СЖ до 40:1. Клапанов в этом двигателе нет, потому как двухтактный.

Минус такого двигателя в том, что он весьма прожорлив и не экологичен. На автомобилях двухтактные двигатели в наше время почти не устанавливаются.

//www.youtube.com/watch?v=fIG9pWldO8U

На этом пока тема систем с изменяющейся степенью сжатия закрывается. Ждем новых изобретений.

https://www.youtube.com/watch?v=UrmRsDrtY7o\u0026pp=YAHIAQE%3D

До скорой встречи на страницах блога. Подписывайтесь!

Nissan разработала ДВС с изменяемой степенью сжатия

Двигатель с изменяемой степенью сжатия: принцип работы и особенности Двигатель VC-T. Изображение: Nissan

Японский автопроизводитель Nissan Motor представил новый тип бензинового двигателя внутреннего сгорания, который по некоторым параметрам превосходит продвинутые современные дизельные двигатели.

Новый двигатель Variable Compression-Turbo (VC-T) способен при необходимости изменять степень сжатия газообразной горючей смеси, то есть изменять шаг хода поршней в цилиндрах ДВС. Этот параметр обычно является фиксированным. Судя по всему, VC-T станет первым в мире ДВС с изменяемой степенью сжатия смеси.

Степень сжатия — отношение объёма надпоршневого пространства цилиндра двигателя внутреннего сгорания при положении поршня в нижней мёртвой точке (полный объём цилиндра) к объёму надпоршневого пространства цилиндра при положении поршня в верхней мёртвой точке, то есть к объёму камеры сгорания. Повышение степени сжатия в общем случае повышает его мощность и увеличивает КПД двигателя, то есть способствует снижению расхода топлива. В обычных бензиновых двигателях степень сжатия обычно составляет от 8:1 до 10:1, а в спортивных машинах и гоночных болидах может достигать 12:1 или больше. При повышении степени сжатия двигатель нуждается в топливе с бóльшим октановым числом. Двигатель с изменяемой степенью сжатия: принцип работы и особенности Двигатель VC-T. Изображение: Nissan На иллюстрации показана разница в шаге поршней на разной степени сжатия: 14:1 (слева) и 8:1 (справа). В частности, демонстрируется механизм изменения степени сжатия от 14:1 к 8:1. Он происходит таким образом.

  1. В случае необходимости изменить степень сжатия активируется модуль Harmonic Drive и сдвигает рычаг актуатора.
  2. Рычаг актуатора поворачивает приводной вал (Control Shaft на схеме).
  3. Когда приводной вал поворачивается, он изменяет угол наклона многорычажной подвески (Multi-link на схеме)
  4. Многорычажная подвеска определяет высоту, на которую каждый поршень способен подняться в своём цилиндре. Таким образом, изменяется степень сжатия. Нижняя мёртвая точка поршня, судя по всему, остаётся прежней.

Конструкция запатентована Nissan (патент США № 6,505,582 от 14 июня 2003 года).

Изменение степени сжатия в ДВС можно в каком-то смысле сравнить с изменением угла атаки в винтах регулируемого шага — концепции, которая много десятилетий применяется в воздушных и гребных винтах. Изменяемый шаг винта позволяет поддерживать эффективность движителя близкой к оптимальной вне зависимости от скорости движения носителя в потоке.

Технология изменения степени сжатия ДВС даёт возможность сохранить мощность двигателя при соблюдении строгих нормативов к экономичности двигателя. Вероятно, это вообще самый реальный способ соблюсти эти нормативы.

«Все сейчас работают над изменяемой степень сжатия и другими технологиями, чтобы значительно улучшить экономичность бензиновых двигателей, — говорит Джеймс Чао (James Chao), управляющий директор по Азиатско-Тихоокеанскому региону и консультант IHS, — По крайней мере последние двадцать лет или около того». Стоит упомянуть, что в 2000 году компания Saab показывала прототип такого двигателя Saab Variable Compression (SVC) для Saab 9-5, за который удостоилась ряда наград на технических выставках. Затем шведскую фирму купил концерн General Motors и прекратил работу над прототипом.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности Двигатель Saab Variable Compression (SVC). Reedhawk Двигатель VC-T обещают вывести на рынок в 2017 году с автомобилями марки Infiniti QX50. Официальная презентация назначена на 29 сентября на Парижском автосалоне. Этот двухлитровый четырёхцилиндровый двигатель будет обладать примерно такой же мощностью и крутящим моментом, что и 3,5-литровый двигатель V6, место которого займёт, но обеспечит экономию топлива 27%, по сравнению с ним. Инженеры Nissan говорят также, что VC-T будет дешевле, чем современные продвинутые дизельные двигатели с турбонаддувом, и будет полностью соответствовать современным нормам на выбросы оксида азота и других выхлопных газов — такие правила действуют в Евросоюзе и некоторых других странах. После Infiniti новыми двигателями планируется оснащать другие автомобили Nissan и, возможно, партнёрской компании Renault.Двигатель с изменяемой степенью сжатия: принцип работы и особенности Двигатель VC-T. Изображение: Nissan

Читайте также:  Рулонный пресс-подборщик прф-110

Можно предположить, что усложнённая конструкция ДВС в первое время вряд ли будет отличаться надёжностью. Есть смысл выждать несколько лет, прежде чем покупать автомобиль с двигателем VC-T, если только вы не хотите участвовать в тестировании экспериментальной технологии.

Изменяемая степень сжатия ДВС

Здравствуйте уважаемые читатели моего блога. В этой статье рассотрим изменяемую степень сжатия ДВС.

Степень сжатия двигателя внутреннего сгорания тесно связана с к.п.д. В бензиновых двигателях степень сжатия ограничивается областью детонационного сгорания.

Эти ограничения имеют особое значение для работы двигателя на полных нагрузках, в то время как на частичных нагрузках высокая степень сжатия не вызывает опасности детонации.

Для увеличения мощности двигателя и повышения экономичности желательно снижать степень сжатия, однако если степень сжатия будет малой для всех диапазонов работы двигателя, это приведет к снижению мощности и увеличению расхода топлива на частичных нагрузках.

При этом значения степени сжатия, как правило, выбираются намного ниже тех величин, при которых достигаются наиболее экономичные показатели работы двигателей. Заведомо ухудшая экономичность двигателей, это обстоятельство особенно сильно проявляется при работе на частичных нагрузках.

Между тем, снижение наполнения цилиндров горючей смесью, увеличение относительного количества остаточных газов, уменьшение температуры деталей и т.п. создают возможности для повышения степени сжатия при частичных нагрузках с целью повышения экономичности двигателя и увеличения его мощности. Чтобы решить такую компромиссную задачу, разрабатываются варианты двигателей с изменяющейся степенью сжатия.

Повсеместное применение в конструкциях двигателей систем наддува сделало направление этой работы еще более актуальным. Дело в том, что при наддуве значительно увеличиваются механические и тепловые нагрузки на детали двигателя, в связи с чем их приходится усиливать, повышая массу всего двигателя в целом.

При этом, как правило, срок службы деталей, работающих при более нагруженном режиме, сокращается, а надежность двигателя снижается.

В случае перехода на переменную степень сжатия рабочий процесс в двигателе при наддуве можно организовать так, что за счет соответствующего снижения степени сжатия при любых давлениях наддува максимальные давления рабочего цикла (т.е. эффективность работы) будут оставаться неизменными или будут изменяться незначительно.

При этом, несмотря на увеличение полезной работы за цикл, а, следовательно, и мощности двигателя, максимальные нагрузки на его детали могут не увеличиваться, что позволяет форсировать двигатели без внедрения изменений в их конструкцию.

Очень существенным для нормального протекания процесса сгорания в двигателе с изменяющейся степенью сжатия является правильный выбор формы камеры сгорания, обеспечивающей наиболее короткий путь распространения пламени.

Изменение фронта распространения пламени должно быть очень оперативным, чтобы учитывать различные режимы работы двигателя при эксплуатации автомобиля.

Учитывая применение дополнительных деталей в кривошипно-шатунном механизме, необходимо также   разрабатывать системы с малым коэффициентом трения, чтобы не потерять преимуществ  при применении изменяющейся степени сжатия.

Один из наиболее распространенных вариантов двигателя с изменяющейся степенью сжатия показан на рис.1.

Двигатель с изменяемой степенью сжатия: принцип работы и особенностиРис. 1. Схема двигателя с изменяющейся степенью сжатия:

1 – шатун; 2 – поршень; 3 – эксцентриковый вал;  4 — дополнительный шатун; 5 – шатунная шейка коленчатого вала; 6 – коромысло

На частичных нагрузках дополнительный шатун 4 занимает крайнее нижнее положение и поднимает зону рабочего хода поршня. Степень сжатия при этом максимальна. При высоких нагрузках эксцентрик на валу 3 поднимает ось верхней головки дополнительного шатуна 4. При этом увеличивается надпоршневой зазор и уменьшается степень сжатия.

В 2000 году в Женеве был представлен экспериментальный бензиновый двигатель фирмы SAAB с изменяемой степенью сжатия. Его уникальные особенности позволяют достигать мощности в 225 л.с.

при рабочем объеме в 1,6 л. и сохранять расход топлива сравнимого с вдвое меньшим двигателем.

Возможность бесшагового изменения рабочего объема позволяет двигателю работать на бензине, дизельном топливе или на спирте.

Цилиндры двигателя и головка блока выполнены как моноблок, т. е. единым блоком, а не раздельно как у обычных двигателей (рис. 2). Отдельный блок представляет собой также блок-картер и шатунно-поршневая группа. Моноблок может перемещаться в блок-картере.

Левая сторона моноблока при этом опирается на расположенную в блоке ось 1, служащую шарниром, правая сторона может приподниматься или опускаться при помощи шатуна 3 управляемого эксцентриковым валом 4.

Для герметизации моноблока и блок-картера предусмотрен гофрированный резиновый чехол 2.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Рис. 2. Двигатель с изменяющейся степенью сжатия SAAB:

1 – ось; 2 – резиновый чехол; 3 – шатун; 4 – эксцентриковый вал.

Степень сжатия изменяется при наклоне моноблока относительно блок-картера посредством гидропривода при неизменном ходе поршня. Отклонение моноблока от вертикали приводит к увеличению объема камеры сгорания, что вызывает снижение степени сжатия.

При уменьшении угла наклона степень сжатия повышается. Максимальная величина отклонения моноблока от вертикальной оси – 4%.

На минимальной частоте вращения коленчатого вал и сбросе подачи топлива, а также при малых нагрузках, моноблок занимает самое нижнее положение, в котором объем камеры сгорания минимален (степень сжатия – 14). Система наддува отключается, и воздух поступает в двигатель напрямую (рис. 3 а).

Под нагрузкой,  за счет поворота эксцентрикового вала, шатун отклоняет моноблок в сторону, и объем камеры сгорания увеличивается (степень сжатия – 8). При этом сцепление подключает нагнетатель, и воздух начинает поступать в двигатель под избыточным давлением (рис. 3  б).

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Рис. 3. Изменение подачи воздуха в двигатель SAAB при различных режимах:

а – на малой частоте вращения коленчатого вала; б – на нагрузочных режимах

Оптимальная степень сжатия рассчитывается блоком управления электронной системы с учетом частоты вращения коленчатого вала, степени нагрузки, вида топлива и др. параметров.

В связи с необходимостью быстрого реагирования на изменение степени сжатия в данном двигателе пришлось отказаться от турбокомпрессора в пользу механического наддува с промежуточным охлаждением воздуха с максимальным давлением наддува 2,8 кгс/см2.

Расход топлива для разработанного двигателя на 30% меньше, чем у обычного двигателя такого же объема, а показатели по токсичности отработавших газов соответствуют действующим нормам.

Французская фирма МСЕ-5 Development, разработала для концерна «Пежо-Ситроен»,  двигатель с изменяемой степенью сжатия VCR (Variable Compression Ratio). В этом решении применена оригинальная кинематика кривошипно-шатунного механизма (рис. 4).

В данной конструкции передача движения  от шатуна на поршни осуществляется через двойной зубчатый сектор 2. С правой стороны двигателя  расположена опорная зубчатая рейка 3, на которую опирается сектор 2. Такое зацепление обеспечивает строго возвратно-поступательное движение поршня 4. Рейка соединена с поршнем управляющего гидроцилиндра 5.

В зависимости от режима работы двигателя по сигналу блока управления двигателем изменяется положение поршня управляющего цилиндра 6, связанного с рейкой.

Смещение рейки управления вверх или вниз изменяет положение ВМТ и НМТ поршня двигателя, а вместе с ними и степень сжатия от 7:1 до 20:1 за 0,1 с.

В случае необходимости имеется возможность изменения степени сжатия для каждого цилиндра в отдельности.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Рис. 4. Двигатель с изменяемой степенью сжатия VCR:

Спасибо за внимание!

Что такое VC-Turbo: как работает двигатель с изменяемой степенью сжатия

Идея создания бензинового мотора, где степень сжатия в цилиндрах была бы величиной непостоянной, не нова.

Так, при разгоне, когда требуется наибольшая отдача двигателя, можно на несколько секунд пожертвовать его экономичностью, уменьшив степень сжатия, — это позволит предотвратить детонацию, самопроизвольное возгорание топливной смеси, которое может возникнуть при высоких нагрузках.

При равномерном движении степень сжатия, напротив, желательно повысить, чтобы добиться более эффективного сгорания топливной смеси и снижения расхода горючего — в этом случае нагрузка на мотор невелика и опасность возникновения детонации минимальна.

В общем, в теории все просто, однако реализовать эту идею на практике оказалось не так уж легко. И японские конструкторы стали первыми, кто сумел довести замысел до серийного образца.

Суть разработанной корпорацией Nissan технологии в том, чтобы, в зависимости от требуемой отдачи мотора, непрерывно изменять максимальную высоту подъема поршней (так называемую верхнюю мертвую точку — ВМТ), что в свою очередь приводит к уменьшению или росту степени сжатия в цилиндрах.

Ключевой деталью этой системы является особое крепление шатунов, которые соединяются с коленчатым валом через подвижный блок коромысел.

Блок в свою очередь связан с эксцентриковым управляющим валом и электромотором, который по команде электроники приводит этот хитрый механизм в движение, меняя наклон коромысел и положение ВМТ поршней во всех четырех цилиндрах одновременно. 

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Разница степени сжатия в зависимости от положения ВМТ поршня. На левой картинке мотор находится в экономичном режиме, на правой — в режиме максимальной отдачи. A: когда требуется изменение степени сжатия, электромотор поворачивает и перемещает рычаг привода.

Читайте также:  Характеристики мотоблока агро, возможности переделки

B: приводной рычаг поворачивает управляющий вал. C: когда вал вращается, он действует на рычаг, связанный с коромыслом, изменяя угол наклона последнего.

D: в зависимости от положения коромысла, ВМТ поршня поднимается или опускается, таким образом изменяя степень сжатия.

В результате при разгоне степень сжатия уменьшается до 8:1, после чего мотор переходит в экономичный режим работы со степенью сжатия 14:1. Его рабочий объем при этом меняется от 1997 до 1970 см3. «Турбочетверка» нового Infiniti QX50 развивает мощность 268 л. с.

и крутящий момент в 380 Нм — ощутимо больше, чем 2,5‑литровый V6 предшественника (его показатели — 222 л. с. и 252 Нм), расходуя при этом на треть меньше бензина.

Кроме того, VC-Turbo на 18 кг легче атмосферной «шестерки», занимает меньше места под капотом и достигает максимума крутящего момента в зоне более низких оборотов.

Кстати, система регулировки степени сжатия не только повышает эффективность работы мотора, но и снижает уровень вибраций.

Благодаря коромыслам шатуны при рабочем ходе поршней занимают почти вертикальное положение, в то время как у обычных двигателей они ходят из стороны в сторону (из-за чего шатуны и получили свое название).

В результате даже без уравновешивающих валов этот 4‑цилиндровый агрегат работает так же тихо и плавно, как V6.

Но изменяемое положение ВМТ при помощи сложной системы рычагов — не единственная особенность нового мотора.

Меняя степень сжатия, этот агрегат также способен переключаться между двумя рабочими циклам: классическим Отто, по которому функционирует основная масса бензиновых двигателей, и циклом Аткинсона, встречающимся в основном у гибридов.

В последнем случае (при высокой степени сжатия) из-за большего хода поршней рабочая смесь сильнее расширяется, сгорая с большей эффективностью, в результате растет КПД и снижается расход бензина.

Помимо двух рабочих циклов, этот мотор также использует две системы впрыска: классический распределенный MPI и непосредственный GDI, который повышает эффективность сгорания топлива и позволяет избежать детонации при высоких степенях сжатия.

Обе системы работают попеременно, а при высоких нагрузках — одновременно. Положительный вклад в повышение КПД двигателя вносит и особое покрытие стенок цилиндров, которое наносится методом плазменного напыления, а затем закаливается и хонингуется.

В результате получается ультрагладкая «зеркальная» поверхность, на 44 % уменьшающая трение поршневых колец.

Двигатель с изменяемой степенью сжатия: принцип работы и особенности

Еще одна уникальная особенность мотора VC-Turbo — это интегрированная в его верхнюю опору система активного подавления вибраций Active Torque Road, основой которой является возвратно-поступательный актуатор.

Эта система управляется датчиком ускорений, фиксирующим колебания двигателя и в ответ генерирует гасящие вибрации в противофазе.

Активные опоры в Infiniti впервые использовали в 1998 году на дизельном моторе, но та система оказалась слишком громоздкой, поэтому не получила распространения. Проект пролежал под сукном до 2009 года, пока японские инженеры не взялись за его усовершенствование.

На то, чтобы решить проблему избыточного веса и размеров гасителя колебаний, ушло еще 8 лет. Но результат впечатляет: благодаря ATR 4‑цилиндровый агрегат нового Infiniti QX50 работает на 9 дБ тише, чем V6 его предшественника!

В чём сила моторов с изменяемой степенью сжатия

Эпоха двигателей внутреннего сгорания неумолимо подходит к концу. Но эти старички на излёте достигли невероятного технологического совершенства. Рассказываем об одной из самых крутых фишек ДВС – изменяемой степени сжатия.

https://www.youtube.com/watch?v=LOAI0n2t5Z0\u0026pp=ygV_0JTQstC40LPQsNGC0LXQu9GMINGBINC40LfQvNC10L3Rj9C10LzQvtC5INGB0YLQtdC_0LXQvdGM0Y4g0YHQttCw0YLQuNGPOiDQv9GA0LjQvdGG0LjQvyDRgNCw0LHQvtGC0Ysg0Lgg0L7RgdC-0LHQtdC90L3QvtGB0YLQuA%3D%3D

На протяжении всей истории двигателей внутреннего сгорания разработчики любыми способами пытались выжать из них максимум мощности и крутящего момента на единицу массы и рабочего объёма. Сделать это можно с помощью уймы способов и технических ухищрений. Пожалуй, самый изысканный из них – технология изменения степени сжатия.

Обычные бензиновые и дизельные двигатели внутреннего сгорания имеют фиксированную степень сжатия – величину, определяющую отношение объёма камеры сгорания над поршнем, находящимся в нижней «мёртвой» точке, к объёму, когда поршень находится в верхней «мёртвой» точке.

Для бензиновых движков он варьируется в диапазоне от 8 до 14, а для дизелей – от 18 до 23.

В теории, чем выше степень сжатия топливовоздушной смеси, тем лучше – это позволяет получить максимальный КПД и увеличить мощность благодаря чрезвычайной эффективности сжигания топлива.

Правда, есть нюанс: на практике чрезмерное повышение степени сжатия приводит к тому, что топливо в цилиндрах двигателя начинает не сгорать равномерно, а взрываться — детонировать.

В результате на больших нагрузках и высоких оборотах движок не просто не выдаёт дополнительную мощность, но и напротив теряет эффективность.

Более того, ударные нагрузки на поршень и камеры сгорания приводят к быстрому выходу агрегата из строя.

Слайд, который я выбрал вместо рекламы.Листай дальше, еще много интересного

Детонации можно избежать путём увеличения октанового числа бензина (высокооктановое топливо сгорает медленнее) и замедления воспламенения. Помогают в этом датчики детонации и настройки ПО. Ещё больше проблему усугубляет турбонаддув: он дополнительно повышает и без того высокое давление в камере сгорания.

Чтобы добиться от ДВС высокой отдачи, нужно заставить его работать во всех без исключения режимах на самой грани детонации, не допуская этого разрушительного явления – на любых оборотах и под любой нагрузкой.

Эффективность сгорания топлива можно изменять увеличением клапанов на цилиндр, изменением графика их работы, оптимизацией места и процесса впрыска топлива и рядом других способов. А можно – и вовсе динамическим изменением степени сжатия.

Вот только сделать это технически очень непросто.

Воплотить технологию динамического изменения степени сжатия двигателей внутреннего сгорания инженеры пытались на протяжении многих десятилетий, однако в металле – на серийных машинах — она воплотилась совсем недавно, в 2016 году.

Одной из первых идей реализации изменения степени сжатия ДВС стала система с дополнительным поршнем в камере сгорания. Она оказалась труднореализуемой из-за значительного повышения количества деталей и нарушения оптимальной конфигурации камеры сгорания.

Опытные образцы так и остались пылиться в лабораториях.

Второй опробованный конструкторами путь – управление высотой подъёма коленвала. В такой конструкции опорные шейки коленвала размещены в эксцентриковых муфтах, приводимых в действие через шестерни электромотором.

Коленчатый вал может в процессе работы опускаться и подниматься, изменяя тем самым степень сжатия. Опытный образец такого мотора был создан немецким Volkswagen в 2000 году. Технологию даже успели обкатать на Audi A6: с 1,8-литрового турбомотора удалось снять 218 л. с.

и 300 Нм крутящего момента. Правда, в серийное производство агрегат так и не пошёл.

Одновременно с Volkswagen над системой динамического изменения степени сжатия работали инженеры Saab. Их технология базировалась на изменении высоты подъёма блока цилиндров и получила имя Saab Variable Compression (SVC).

Обкатали технологию на 1,6-литровом пятицилиндровом турбомоторе: агрегат развивал 225 л. с. и 305 Нм крутящего момента. Одной из любопытных особенностей стало то, что «кормить» этот движок можно было любым бензином – от 80-го до 98-го: диапазон степени сжатия изменялся в пределах от 8 до 14.

Практика показала, что надёжность у сложного механизма сильно хромала.

Французские инженеры компании MCE-5 Development S.A. явили миру 1,5-литровый турбомотор с изменяемой степенью сжатия от 7 до 18. Со скромного объёма удалось снять 220 л. с. и целых 420 Нм крутящего момента.

В системе применялись шатуны сложной формы с зубчатым коромыслом. Управление поднятием поршня осуществлялось посредством специальных масляных клапанов и электропривода. В серию не пошла и такая технология.

Первопроходцем, сумевшим довести изменяемую степень сжатия до серии, стал японский бренд Infiniti.

Система Variable Compression Turbo (VC-T) внедрила в конструкцию кривошипно-шатунного механизма мотора дополнительные элементы — коромысла между шатуном и коленвалом.

Управляются они с помощью электромоторов, что позволяет изменять диапазон хода поршня на 5 мм. Казалось бы, ничтожная величина на практике позволяет существенно изменять степень сжатия.

При малых нагрузках н мотор, когда смесь обедненная, используется максимальное сжатие, а в нагруженном режиме, когда бензина впрыскивается много и возможна детонация, мотор сжимает смесь минимально. Это позволяет сдвигать назад угол опережения зажигания, что положительно влияет на отдачу.

Агрегат получился настолько сбалансированным, что из конструкции были выведены балансировочные валы. Чертовски сложная, но действительно умная и сложная технология. Судите сами: с 2,0-литрового турбомотора Infiniti VC-T производитель с ходу снял 270 л. с.

Познакомиться с технологичным агрегатом поближе можно, купив, к примеру, QX50 (его мощность на нашем рынке – 249 л. с.).

Ссылка на основную публикацию
Adblock
detector