Двигатель без клапанных пружин: новые технологии двигателестроения

Ребят сегодня небольшая но очень интересная статья, она не рекламная, как наверное многие подумают! Нет, ребята, просто я увидел один из интересных роликов на Youtube и подумал а почему бы нет! Ведь все что сделали наши с вами земляки, реально может работать.

Дело тут в тюнинге головки блока, они вообще убрали клапанные пружины из нее, что добавляет мощности и экономичности двигателю.

В общем, у меня для вас просьба ребята — максимальный репост и лайки, также расскажите про эту статью на форумах! Нужно народу помочь …

Двигатель без клапанных пружин: новые технологии двигателестроения

ОГЛАВЛЕНИЕ СТАТЬИ

Знаете, не перевелись еще умные головы на нашей земле, а они изобретают новые и простые решения для наших с вами автомобилей, которые гипотетически (если ВАЗ) прислушается, могут сделать просто революцию, увеличить КПД двигателя внутреннего сгорания на 7 – 10 %, что очень немало! А с учетом других доработок, могут добиться 10 – 12% увеличения. Таким образом, бензиновый двигатель приблизится по эффективности к дизельному!

Ладно, не буду петь долгие дифирамбы, сами все увидите внизу в видео. А сейчас принцип работы обычного распредвала.

Обычный распредвал, основанный на пружинах

Если вы хоть чуть-чуть разбираетесь в строении ГРМ (газораспределительного механизма) двигателя, вы знаете, что у каждого клапана есть специальная пружина, которая возвращает его обратно, когда коленвал его продавит вниз. Без такого строения работа будет невозможной!

Двигатель без клапанных пружин: новые технологии двигателестроения
Двигатель без клапанных пружин: новые технологии двигателестроения

Эти пружины оттягивают на себя достаточно большую часть энергии распредвала, то есть двигателю нужно продавить эту пружину, после чего она вернет клапан на место!

Двигатель без клапанных пружин: новые технологии двигателестроения

Чтобы продавить этот упругий механизм, двигателю нужно потратить примерно от 30 до 100 кг на сжатие, это очень большая энергия. А теперь представьте что таких пружин 16, по наличию клапанов.

И каждый раз, когда мотор работает, он отдает часть своей энергии на преодоление этого усилия.

Модернизированный механизм, основанный на магнитах

Теперь разберем работу, основанную на магнитах, что предложили наши умельцы.

Вместо обычного коленвала, имеется специальный, который имеет магнитные эксцентрики, сделанные из магнитов (либо имеющие магниты в своем строении).

Они притягивают конструкцию клапана, и находятся с ней в постоянном зацеплении. То есть клапан всегда как бы намагничен к этой части вала. В нужное время он закрывается, в другое открывается.

Двигатель без клапанных пружин: новые технологии двигателестроения
Двигатель без клапанных пружин: новые технологии двигателестроения

Что нам это дает? Все просто – рапредвалы не испытывают давления пружин, не тратят энергию на преодоление сжатия, а поэтому экономится реально куча энергии! Это реально прорыв.

Двигатель без клапанных пружин: новые технологии двигателестроения
Двигатель без клапанных пружин: новые технологии двигателестроения

Как заверяют сами производители, экономия топлива достигает 3 – 4 литров на 100 километров, а таким образом, если ваша ПРИОРА (на механике) расходует 8 -9 литров в городском режиме, то после переделки будет всего 5 – 6 литров! Просто супер! Прибавляется и мощность, по заверению изобретателей около 20 – 30 л.с.

Сейчас ребята, видео этих народных умельцев, больше контактов я не нашел. Можно посмотреть их канал на YOUTUBE.

Сомнения и размышления

Конечно даже самая идеальная система – неидеальная, многие скажут, что клапан «оторвется» от высоких оборотов и машина будет работать не эффективно! НО и здесь «Кулибины» представляют видео, оказывается — что клапан может держать 400 грамм веса, что более чем предостаточно для нормальной работы, смотрим.

Другие могут сказать, что магниты это мягкий металл и при высоких температурах его просто раскрошит. Но подумайте — зачем делать голое зацепление с магнитом? Ведь его можно закрыть в тонкий, но прочный металлический корпус, который будет противостоять нагрузкам, то есть магнит будет как бы в скорлупе!

Третьи могут возразить – что магнит со временем потеряет свое притяжение, это конечно справедливо, но реально пройдет несколько лет, можно будет поменять на новые магнитные валы. Ведь обычные, также выходят из строя через определенный пробег.

Так что изобретение вполне живучее, причем ребята получили патент. Хочется, чтобы оно не «похерилось» как обычно у нас это бывает, а получило свое развитие.

Дополнительные проценты энергии

Так как у нас на валу крутятся, по сути мощные магниты, то к ним можно примастерить катушки индукции, с 16 клапанов можно будет снимать дополнительное напряжение которые может заменить собой генератор, таким образом мы убираем еще одно звено которое съедает драгоценные проценты КПД.

Очень интересны ваши комментарии, репост в соцсетях. Давайте поддержим изобретение!

(12

В сша разработали принципиально новый двс с невероятными характеристиками

Многотопливный двигатель внутреннего сгорания без поршней и всем известного «треугольника» Ванкеля предложила компания Astron Aerospace. Судя по заявлениям разработчиков, принципиально новая схема работы обеспечит невиданные доселе характеристики отдачи при минимальных размерах и массе.

Как это работает

На сегодняшний день доступна единственная анимация. Принцип работы по ней уловить можно, но обсуждать, насколько хорошо и эффективно это будет функционировать в реале, смысла мало.

Двигатель без клапанных пружин: новые технологии двигателестроения

Двигатель сохраняет классические полноценные 4 такта работы. Только роль поршней и шатунов выполняют два вращающихся навстречу друг другу ротора с шипами и ответными пазами – они служат для сжатия и выбрасывания газов.

Как и в камерах сгорания поршневых моторов, такты в моторе протекают параллельно, а роль клапанов выполняет небольшое окно, расположенное посередине.

Роторы введены в зацепление между собой зубчатыми венцами – таким образом, являясь и коленвалом, и распредвалами, и ГРМ заодно.

  • Двигатель без клапанных пружин: новые технологии двигателестроения
  • Авторы утверждают, что конструкция куда проще и надёжнее поршневых двигателей, а в процессе сборки нет необходимости применять вечно текущие уплотнения, сальники и прокладки.
  • Лучше всего принцип действия продемонстрирует подробное видео от разработчиков – в пятиминутном ролике всё разложено предельно подробно, от схемы до анимации работы.
  • Кстати, бонусом в конце показаны несколько секунд работы реального прототипа.

Introducing the Omega 1. A revolutionary engine. from Astron Aerospace on Vimeo.

Introducing the Omega 1. A revolutionary engine. from Astron Aerospace on Vimeo.

Зачем это нужно?

На логичный вопрос авторы приводят целый список причин, почему Omega 1 лучше обычных ДВС. Следуя указанным характеристикам, новейший мотор при весе всего 16 кг выдаёт 160 сил, не требует замены масла на протяжении 100 000 (!) км, не страдает утечками технических жидкостей, дёшев в производстве и так далее.

Просто инопланетные технологии, не иначе. Понятно, что дебют всегда хочется приукрасить. Но замена смазки раз в сто тысяч и «механическая эффективность более 90%» — это уже что-то на уровне нескольких Нобелевских премий.

Двигатель без клапанных пружин: новые технологии двигателестроения

Один в поле Ванкель

Если абстрагироваться от совершенно неземных заявленных характеристик, идея Omega 1 действительно интересна. Пусть это не понравится маркетологам, но принципиальная схема ДВС не менялась практически с момента его создания на заре XX века. А вот предложить что-то действительно новое пытались единицы.

И среди этих единиц только одному мотору удалось достичь результатов – творению Вальтера Фройде и Феликса Ванкеля. Да и то в разработанной схеме получился очень большой перекос в сторону характеристик: роторно-поршневой мотор до сих пор славится своим приёмом (что важно в автоспорте), но так и не решёнными проблемами ресурса и надёжности.

Только Mazda, которая считается единственным мировым оплотом схемы Ванкеля в автомобильном мире, ещё пытается как-то продвигать эту тему.

Двигатель без клапанных пружин: новые технологии двигателестроения

Зыбкие перспективы

Интересно наблюдать, как жидкотопливные двигатели изо всех сил борются за жизнь. Поставленные в уже невыполнимые рамки экологических требований ближайшего будущего, они вынуждены мутировать в различные весьма любопытные виды.

Другое дело, что энтузиастам в одиночку освоить выпуск – да хотя бы полноценную разработку и доводку! – новейших схем двигателей невозможно.

Нарисованный буквально в этом месяце (как и сайт), и получивший широкую огласку в СМИ проект того же мифического Astron Aerospace – не что иное как попытка группы инженеров привлечь инвесторов.

Это единственный сегодня способ дать ход любой мало-мальски сложной разработке.

Таким образом, можно резюмировать, что судьба Omega 1 будет целиком и полностью зависеть от интереса к ней со стороны автопроизводителей. Ну а им сейчас, как все мы знаем, уже давно не до бензина.

Есть ли будущее у двигателя внутреннего сгорания без коленчатого вала со свободным поршнем?

История совершенствования двигателя внутреннего сгорания (ДВС) — длительный путь постоянного усложнения систем, обслуживающих термодинамические процессы в камере сгорания машины объѐмного вытеснения с кривошипно-шатунным механизмом.

Читайте также:  Как продлить работу двигателя автомобиля и увеличить ресурс ДВС

Нетрадиционным направлением развития конструкций двигателей внутреннего сгорания, является разработка свободнопоршневых энергетических установок.

Их особенности работы связаны с отсутствием кривошипно-шатунного механизма, преобразующего в традиционном двигателе возвратно-поступательное движение поршня в однонаправленное вращение выходного вала.

Отсутствие ограничителя движения поршня (кривошипно-шатунного механизма) приводит к иному закону движения, что позволяет получить качественно новые его характеристики.

Двигатель без клапанных пружин: новые технологии двигателестроения

Устроен двигатель просто. По сути, это цилиндр с глухими концами, внутри которого скользит поршень. На каждом конце цилиндра – инжектор для впрыска топлива, впускное и выпускное окно или клапана.

В зависимости от типа топлива к ним могут быть добавлены свечи зажигания. И все: меньше десятка простейших деталей и лишь одна — движущаяся.

Поршень в таком двигателе движется линейно, возвратно-поступательно, между двумя камерами сгорания.

В традиционной силовой установке среди нагромождения этих систем практически не виден сам двигатель, структурная схема основного механизма которого осталась неизменной со времѐн Ленуара, Отто, Бенца и Даймлера.

Существует своеобразное «табу» на основной механизм ДВС при котором значительно изменяется конструкция различных систем: газообмена, впрыска топлива и т.д., но существенным образом не изменяется схема кривошипно-шатунного механизма.

И это при том, что кривошипно-шатунный механизм имеет много принципиальных недостатков: он обеспечивает возможность реализации далеко не идеального термодинамического процесса при постоянно изменяющемся рабочем объѐме и не позволяет преобразовывать максимальную нагрузку на поршень в крутящий момент на валу при нулевом эффективном плече; быстротекущие процессы расширения-сжатия определяют политропный процесс преобразования тепловой энергии, существенно отличающийся от идеального; прижатие поршня к цилиндру существенно ограничивает работоспособность и ресурс двигателя, а механизм одноцилиндрового двигателя вовсе кинематически неработоспособен и необходимо применение лишней массивной детали — маховика.

Кроме того повышение частоты вращения и степени сжатия, как способ увеличения литровой мощности двигателя, приводит к снижению его термодинамического совершенства. Как следствие имеется объективная причина поиска принципиально новых механизмов двигателей силовых установок.

Оригинальная концепция двигателя внутреннего сгорания — простота.

Одна из самых радикальных концепций ДВС в истории — двигатель со свободным поршнем. Первые упоминания о нем в специальной литературе относятся к 20-м годам прошедшего столетия.

С 1930-х по 1960-е годы такие двигатели использовались в качестве воздушных компрессоров и газогенераторов, поскольку они обладали заметными преимуществами перед обычными двигателями внутреннего сгорания и газовыми турбинами.

Свободнопоршневой двигатель аналогичен обычному поршневому двигателю внутреннего сгорания, но с заменой системы коленчатого вала линейным поршневым узлом, который может работать свободно и только в линейном перемещении.

КПД такого двигателя теоретически больше 70%. Он легок и прост в производстве, а, значит, дешев. Но, не смотря на то, что этот двигатель известен около ста лет, широкого распространения он не получил.

Причин тому несколько, и самая главная из них состоит в том, что до последнего времени инженеры не знали, каким способом можно было бы снять мощность с поршня, движущегося взад-вперед внутри цилиндра с частотой 20 000 раз в минуту.

Двигатель без клапанных пружин: новые технологии двигателестроения

Основная особенность свободнопоршневого двигателя в том, что движение поршня определяется не механической связью кривошипно-шатунного механизма, а соотношением нагрузки к силе расширяющихся газов. Степень сжатия, таким образом, у него получается переменной. Как следствие, этот двигатель можно просто настроить на бензин, дизельное топливо, этанол, природный газ, водород и т. д.

Первостепенная проблема — как снять мощность с такого двигателя, который механически представляет собой замкнутую систему? Как подключиться к поршню, который перемещается с высокой частотой?

Эта задача долго оставалась нерешенной, хотя попытки производились регулярно.

В частности об нее обломали зубы инженеры General Motors в 1960-х годах в процессе разработки компрессора экспериментального газотурбинного автомобиля.

Действующие образцы судовых насосов на основе свободнопоршневых двигателей в начале 1980-х были изготовлены французской компанией Sigma и британской Alan Muntz, но в серию они не пошли.

Растущий интерес к исследованиям и разработкам, а также инвестиции в эту технологию привели к появлению большего числа конфигураций прототипов двигателя со свободным поршнем.

В целом они могут быть различного типа: двухтактные с оппозитными поршнями, четырехтактные с оппозитными поршнями, двухтактные с одним поршнем и двухтактные с двумя поршнями, используя свечи зажигания или принцип дизельного двигателя и пр.

Известны даже двигатели со свободным поршнем, работающим по принципу Стирлинга.

Двигатель без клапанных пружин: новые технологии двигателестроения

Устроен двигатель просто. По сути, это цилиндр с глухими концами, внутри которого скользит поршень. На каждом конце цилиндра – инжектор для впрыска топлива, впускное и выпускное окно или клапана.

В зависимости от типа топлива к ним могут быть добавлены свечи зажигания. И все: меньше десятка простейших деталей и лишь одна — движущаяся.

Поршень в таком двигателе движется линейно, возвратно-поступательно, между двумя камерами сгорания.

Свободнопоршневой двигатель можно считать наиболее простой конструкцией хорошо приспособленной к требованиям массового производства, исходя из основных требований — простота, минимум подвижных звеньев, высокий КПД.

Преимущества свободнопоршневого двигателя заманчивы:

  • организация и условия протекания рабочего процесса, которые обеспечивают высокие КПД и динамические показатели при отсутствии дымления (сажи) (преимущества свободного поршня в дизеле заключаются в оптимальном подводе тепла, отсутствии ограничений на жесткость и максимальное давление цикла, высокий механический КПД, незначительный (до 10%) провал коэффициента избытка воздуха при наборе нагрузки;
  • многотопливность, возможность применения низкосортных альтернативных топлив и газов произвольного состава, включая сбросные и тощие (содержание метана более 10 – 20 % без потери мощности) с воспламенением от сжатия;
  • динамическая уравновешенность, отсутствие вибраций;
  • низкие затраты при эксплуатации и ремонте;
  • высокие пусковые качества при низких температурах;
  • возможность отключения одного или нескольких секций без остановки остальных;
  • возможность повышения давления наддува и максимального давления сгорания;
  • простота, надежность и технологичность конструкции;
  • удобство компоновки в пространстве (возможен модульный принцип построения):
  • удельная массовая и габаритная мощность значительно выше дизелей.

Свободнопоршневой двигатель можно считать наиболее простым по конструкции и хорошо приспособленным к требованиям массового производства среди всех используемых ДВС.

Двигатель без клапанных пружин: новые технологии двигателестроения

Устроен двигатель просто. По сути, это цилиндр с глухими концами, внутри которого скользит поршень. На каждом конце цилиндра – инжектор для впрыска топлива, впускное и выпускное окно или клапана.

В зависимости от типа топлива к ним могут быть добавлены свечи зажигания. И все: меньше десятка простейших деталей и лишь одна — движущаяся.

Поршень в таком двигателе движется линейно, возвратно-поступательно, между двумя камерами сгорания.

Свободнопоршневой двигатель. Источник: DLR

Однако не все так просто. Перед учеными стоят две важнейшие проблемы свободнопоршневого двигателя: отбор полученной мощности и управление капризным поршнем.

Не так то просто снять механически мощность с двигателя, представляющего собой замкнутую систему, и контролировать работу установки при частоте до 20 000 циклов в минуту. Кроме того, верхняя мертвая точка траектории зависит от степени сжатия и скорости сгорания топливного заряда.

Фактически торможение поршня происходит за счет создания критического давления в камере и последующего самопроизвольного возгорания смеси. В обычном ДВС каждый последующий цикл является аналогом предыдущего благодаря жестким механическим связям между поршнями и коленчатым валом.

В свободнопоршневом же длительность тактов и верхняя мертвая точка — плавающие величины. Малейшая неточность в дозировке топливного заряда или нестабильность режима сгорания вызывают остановку поршня или удар в один из торцов цилиндра.

Таким образом, для двигателя такого типа требуется мощная и быстродействующая электронная система управления. Создать ее не так просто, как кажется. Многие эксперты считают эту задачу трудновыполнимой.

Гарри Смайт, научный руководитель лаборатории General Motors по силовым установкам, утверждает: «Двигатели внутреннего сгорания со свободным поршнем обладают рядом уникальных достоинств. Но чтобы создать надежный серийный агрегат, нужно еще очень много узнать о его термодинамике и научиться управлять процессом сгорания смеси».

Ему вторит профессор Массачусетского технологического института Джон Хейвуд: «В этой области еще очень много белых пятен. Не факт, что для свободнопоршневого двигателя удастся разработать простую и дешевую систему управления».

Но наука и техника развиваются настолько стремительно, что проблемы, реализация которых была невозможна вчера, сегодня вполне реализуемые за счет новых материалов, технологий, микропроцессорной техники и интеллектуальных систем управления.

Двигатель без клапанных пружин: новые технологии двигателестроения

Главная › Новости

Читайте также:  Мотоблок мтз 06

Опубликовано: 27.08.2018

Двигатель без клапанных пружин: новые технологии двигателестроенияПрактический семинар King. Вкладыши для современных двигателей новых конструкций

Как известно, сегодня поршневой двигатель внутреннего сгорания практически достиг предела своего совершенства, то есть значительно улучшить или доработать различные версии силового агрегата данного типа не представляется возможным.

Двигатели «Пульсар»: в России готовят первое серийное производство Конечно, в информационном пространстве встречается информация об уникальных двигателях с максимально увеличенной степенью сжатия (двигатель Ибадуллаева), двигателях без коленвала (например, двигатель Баландина) и т.д.

, однако такие моторы представляют собой единичные опытные экземпляры-прототипы.

При этом детальная конструкция держится в секрете и не доступна широким массам, нет никаких предпосылок для начала серийного производства подобных ДВС , ставится под сомнение реальная работоспособность таких силовых установок и т.д.

Если же говорить об инновациях, которые пошли в серию, сегодня особый интерес представляют разве что бензиновые и дизельные двигатели Mazda SkyActiv . Однако на этом эволюция ДВС все равно не прекратилась. Далее мы рассмотрим, что такое двигатель, который имеет магнитные клапаны , а также какие преимущества в перспективе имеет данное решение.

Доработка ГБЦ: магниты вместо пружин клапана

Двигатель без клапанных пружин: новые технологии двигателестроения

Итак, давно известно, что потери полезной энергии на трение и приведение в действие различных механизмов и узлов в ДВС довольно значительные. Не трудно догадаться, если такие потери снизить, это будет означать, что силовая установка станет мощнее и экономичнее.

Идем далее. Если от коленвала, поршней и шатунов в блоке цилиндров избавиться не так просто, то тюнинг ГБЦ представляет собой вполне посильную задачу. В двух словах,  наиболее перспективным и одновременно простым решением является исключение клапанных пружин из конструкции ГРМ .

Такой подход в перспективе позволит увеличить КПД бензинового мотора на 10 или даже 12 процентов. Результат — бензиновый агрегат по топливной экономичности и ряду других  показателей вплотную приблизится к дизельному.

Чтобы было понятнее, для начала необходимо рассмотреть принцип работы обычного механизма ГРМ с распредвалом и пружинами клапанов. В двух словах, механизм газораспределения работает так, что в результате вращения распределительного вала на клапан воздействует толкатель.

Это позволяет клапану открыться в строго заданный момент и оставаться открытым определенный промежуток времени. Также дополнительно имеется пружина, которая  принудительно закрывает клапан сразу после того, как усилие от толкателя ослабевает.

Так вот, указанные пружины отнимают достаточно много энергии у распредвала. Фактически, двигателю нужно преодолевать усилие пружины, «продавливая» кулачком распредвала, чтобы открыть клапан. Силовой агрегат на продавливание только одной упругой пружины тратит около 30-100 кг. на сжатие, что очень много.

Если к этому добавить, что большинство современных ДВС имеют два распредвала и 16 клапанов, становится понятно, что большую часть энергии  мотор расходует именно для поддержания работы ГРМ.

Так вот, недавно появилась информация о том, что был создан двигатель, который вместо клапанных пружин получил магниты. Разработка принадлежит отечественным новаторам. Если коротко, вместо привычного распредвала с кулачками был установлен доработанный.

Такой вал получил особые магнитные эксцентрики. Эксцентрики притягивают клапан, обеспечивая постоянное зацепление. Получается, клапан «примагничен» к части вала, при этом в заданное время происходит открытие и закрытие клапана.

Получается, исключено давления клапанных пружин на распредвал, а также нет необходимости тратить энергию на преодоление усилия пружины для открытия клапана. В результате удается сэкономить много полезной энергии и увеличить КПД бензинового двигателя.

На практике, это позволяет достичь, в среднем, 30-40% экономии топлива на 100 км. пути, а также добиться прибавки мощности на 25-30%. Кстати, постройка такого двигателя была реализована на базе мотора ВАЗ Приора, а само изобретение создатели успешно запатентовали. Еще добавим, что в перспективе наличие магнитов на валу может позволить добиться еще более впечатляющих результатов.

Например, отдельные энтузиасты на профильных форумах обращают внимание на то, что если к мощным магнитам добавить еще и индукционные катушки,  тогда вполне можно избавиться и от автомобильного генератора . Это значит, что двигателю не нужно будет крутить отдельный агрегат, то есть еще больше должен увеличиться  показатель КПД двигателя. 

Перспективы двигателя с магнитными клапанами

Двигатель без клапанных пружин: новые технологии двигателестроения

Вполне логично, что схема такого устройства ГРМ является достаточно перспективной. Однако для многих скептиков работоспособность данного решения является предметом для споров, надежность также вызывает  определенные сомнения.

Начнем с того, что наибольшего внимания заслуживает сама реализация магнитного крепления, так как на высоких оборотах распредвала клапан может попросту потерять жесткую сцепку, что приведет к нарушениям работы ГРМ и даже может стать причиной непредвиденных поломок.

Единственный аргументом может служить само утверждение изобретателей, которые наглядно демонстрируют, что благодаря магнитам удается удерживать вес около 400 грамм. Этого вполне достаточно для нормальной работы механизма газораспределения с учетом любых оборотов и нагрузок.

Также скептики справедливо отмечают, что магниты являются мягкими, то есть они  не способны выдерживать температурные и ударные нагрузки. При этом решение в этом случае также имеется. Достаточно поместить магнит в металлическую оболочку, которую можно изготовить из сверхпрочных сплавов. В результате магнит будет защищен от повреждений.

Напоследок отметим, что магнит вполне может прийти в негодность через какое-то время (фактически, магнитное поле станет менее сильным и сцепка ослабнет). Такую возможность исключать не стоит, однако для того, чтобы произошло «размагничивание», необходимо много времени (несколько лет).

На практике привычный ГРМ также нуждается в обслуживании через определенный пробег (ослабевают пружины клапанов, изнашивается сам распредвал и т.д.). При этом в двигателе без клапанных пружин, который будет изначально экономичнее и мощнее, также можно сделать замену на новые магниты.

Что в итоге

Как видно, относительно простое и доступное решение внедрить магниты в устройство клапанного механизма позволяет заметно улучшить характеристики ДВС. При этом также стоит отметить  достаточно низкую себестоимость подобной инновации.

С учетом того, что изобретение является запатентованным, вполне вероятно, что в ближайшем будущем такой разработкой заинтересуются представители отечественных и иностранных автоконцернов. В результате двигатель с магнитными клапанами без клапанных пружин имеет все шансы попасть в серийное производство.

Двигатель без клапанных пружин: новые технологии двигателестроения – Storm24.media

Какие критерии считают ключевыми для выбора «самого-самого»? Есть ли принципиальные отличия в подходе к конструированию на разных континентах? Попробуем найти ответы на эти вопросы.

ЕВРОПА: В РЕЖИМЕ ЭКОНОМИИ

На недавней пресс-конференции в Лондоне глава концерна «Пежо-Ситроен» Жан-Мартин Фольц весьма неожиданно для многих отозвался о гибридных автомобилях: «Посмотрите вокруг: таких машин в Европе менее 1%, тогда как доля дизелей достигает половины». По мнению господина Фольца, современный дизель гораздо дешевле в производстве, будучи не менее экономичен и экологичен.

Времена, когда дизели оставляли за собой черный шлейф, тарахтели на всю улицу и заметно уступали по литровой мощности бензиновым моторам, прошли. Сегодня удельная доля дизелей в Европе составляет 52% и продолжает расти. Толчок дают, например, экологические бонусы в виде сниженных налогов, но прежде всего — дороговизна бензина.

Прорыв на дизельном фронте произошел к концу 90-х, когда в серию пошли первые моторы с «коммон рейл» — общей топливной рампой. С тех пор давление в ней неуклонно растет. В новейших двигателях оно достигает 1800 атмосфер, а ведь еще недавно 1300 атмосфер считались выдающимся показателем.

На очереди — системы с двукратным повышением давления впрыска. Сначала насос нагнетает топливо в аккумулирующий резервуар до 1350 атм. Затем давление поднимают до 2200 атм, под которыми оно и поступает в форсунки. Под таким давлением топливо впрыскивают через отверстия меньшего диаметра. Это улучшает качество распыла, повышает точность дозировки. Отсюда выигрыш в экономичности и мощности.

Уже не первый год применяют пилотный впрыск: первая «партия» горючего поступает в цилиндры чуть раньше основной дозы, чем достигается более мягкая работа мотора и чистый выхлоп.

Помимо «коммон рейла», есть иное техническое решение, чтобы поднять давление впрыска на небывалую высоту. Насос-форсунки перебрались с грузовых моторов и на легковые дизели. Им привержен, в частности, «Фольксваген», составляя здоровую конкуренцию «общей рампе».

Одним из камней преткновения на пути дизеля всегда был экологический. Если бензиновые моторы журили за угарный газ, окиси азота и углеводороды в выхлопе, то дизели — за соединения азота и частицы сажи. Введение в прошлом году норм Евро IV далось непросто.

С окислами азота справились посредством нейтрализатора, а вот сажу ловит особый фильтр. Он служит до 150 тыс. км, после чего его либо меняют, либо «прокаливают». По команде управляющей электроники в цилиндр подаются отработавшие газы из системы рециркуляции и большая доза топлива.

Читайте также:  Аварийный режим АКПП: что нужно знать

Температура выхлопа повышается, и сажа выгорает.

Примечательно, что большинство новых дизелей могут работать на биодизельном горючем: в его основе лежат растительные масла, а не нефтепродукты. Это горючее менее агрессивно к окружающей среде, поэтому его массовая доля на рынке Европы должна достигнуть к 2010 году 30%.

Пластиковый двигатель: да, это возможно. Но дорого и бессмысленно

Матти Хольцберг бредил гонками с тех пор, как отец впервые взял его с собой на трассу Уоткинс-Глен. И хотя гонщика из него так и не получилось, вся его жизнь была связана с автоспортом. С 17 лет он работал в маленькой мастерской по настройке двигателей.

К 25 годам основал собственное дело и занялся изготовлением штучных шатунов, поршней, клапанов и других деталей для заряженных гоночных агрегатов из титана и магниевых сплавов.

Заказов хватало на кусок хлеба с маслом, но для того чтобы выдержать конкуренцию, Матти приходилось постоянно придумывать что-то новенькое.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Хольцберг выписывал десятки научных журналов и вычитывал их от корки до корки. В 1969 году он случайно наткнулся на публикацию о невиданном доселе материале — полиамидимидной смоле Torlon (торлон), созданной химиками корпорации Amoco Chemicals. Торлон был почти вдвое легче титана.

Но главное — он мог выдерживать беспрецедентно высокие для пластиков температуры и обладал высокой твердостью. Матти, не мешкая, заказал себе немного торлона. Первой деталью, которая была из него сделана, стал поршень для двигателя старенького Austin Mini, стоявшего в гараже приятеля.

Новый пластик оказался столь твердым и вязким, что резцы и сверла приходили в негодность гораздо быстрее, чем при обработке титана и закаленных сталей. К удивлению Хольцберга, моторчик Austin Mini стуканул лишь через 20 минут работы. Для первого раза это был очень хороший результат.

При осмотре детали стало ясно, что причина разрушения кроется в экстремально сильном нагреве верхней части поршня. Новый поршень получил тонкую коронку из алюминия и работал не хуже заводского, будучи при этом вдвое легче.

Воодушевленный успехом, Хольцберг рискнул заменить стандартный шатун торлоновым, и подопытный моторчик преобразился — предельные обороты выросли с 5 до 7 тысяч, а максимальная мощность подскочила почти на треть! Дальше — больше. Стальные штанги толкателей клапанов, тарелки клапанных пружин и сами пружины уступили место сверхлегким композитным.

Многочасовые прогоны на стенде продемонстрировали, что на предельных нагрузках мотор Хольцберга работал вдвое дольше стандартного агрегата — 600 часов против 300.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Вскоре Матти рискнул предложить свои наработки гонщикам-любителям. Поначалу те крутили пальцем у виска, но работающий мотор с поршнями из пластика и показания динамометра работали лучше всякой рекламы.

Постепенно у Хольцберга образовалась собственная клиентура, и пластиковые запчасти для самых популярных в автогонках моторов Ford Pinto объемом 2,3л расходились по всей Америке. Параллельно он совершенствовал технологию и экспериментировал с рецептурой материала, добавляя к смоле стекло- и углеволокно в различных сочетаниях.

Традиционная механическая обработка заготовок оказалась невероятно трудоемкой, и Хольцбергу пришлось самостоятельно разработать метод точного литья готовых деталей. Удивительно, но дилетанту в области пластиков удалось переплюнуть профессионалов.

В своем домашнем гараже с неоштукатуренными стенами и бетонным полом Матти научился не только полностью удалять из отливки микроскопические пузырьки воздуха, но и ориентировать внутри нее армирующие волокна в заданном направлении с заданной плотностью. На стальных деталях такого эффекта добивались путем сложной закалки в различных режимах.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Двигатель POLIMOTOR LOLA GTP LIGHTS был переделан из обычного Cosworth BDA объемом 2 л и мощностью 318 л.с. После замены стандартных деталей на пластиковые масса мотора снизилась со 150 до 76 кг.

Судьбоносный звонок

В один прекрасный день 1979 года Хольцбергу позвонили из компании Ford. На другом конце провода был не кто иной, как Гленн Лайалл, глава экспериментального подразделения Special Vehicles Operation. «Мистер Хольцберг, — сказал он, — вы сделали столько пластиковых деталей для наших Pinto. Так почему бы вам не попробовать собрать мотор целиком?»

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Четыре цилиндра простенького серийного Ford Pinto 2.3 на 5500 об/мин способны выжать из себя 88 «лошадок». Весит этот стальной механизм 188 кг. Специалисты Ford предложили Матти начать именно с него.

Полная технологическая документация двигателя, чертежи, новая измерительная аппаратура, необходимое количество торлона и других компонентов, а также чек на кругленькую сумму были предоставлены Хольцбергу и его новой компании Polimotor Research незамедлительно.

В штат Polimotor были приняты восемь инженеров, и работа закипела. По условиям контракта ровно через год Хольцберг должен был отправить Лайаллу прототип пластикового мотора и результаты его стендовых испытаний.

Но торлоновый клон Pinto был продемонстрирован ведущему технологу Ford SVO Роду Джиролами уже через четыре месяца. Как вспоминает сам Хольцберг, у Джиролами буквально отпала челюсть, когда тот взглянул на сводную таблицу: 69 кг массы, 318 л.с. на 9200 об/мин при максимальных 14 тысячах!

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

В моторе, который руками мог поднять один человек, осталось лишь несколько стальных деталей — гильзы цилиндров, коронки поршней, инжекторы и клапанные пружины. Причем и последние были через некоторое время заменены на торлоновые.

Коленвал и распредвал также были оригинальными, хотя теоретически Хольцберг мог воссоздать в пластике и их. Кроме того, в сравнении со стальным донором двигатель работал потрясающе тихо: характерный лязг металла сменился мягким пластмассовым постукиванием.

Осмотр нагруженных элементов после длительных испытаний на стенде показал, что их ресурс не уступает оригинальным металлическим аналогам.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Реакция Ford была восторженной. Гленн Лайалл тут же предложил Матти новый и очень серьезный проект- гоночный Cosworth V8. С заменой блока и головки на торлоновые у этого грозного агрегата было решено повременить.

Для начала Хольцберг и Джиролами хотели проверить, сможет ли пластик избавить двигатель от проблем, связанных с настройкой работы клапанного механизма. Для восьмерки были изготовлены новые штанги толкателей клапанов, клапанные коромысла, пружины и направляющие. Сами клапаны также были более чем наполовину сделаны из торлона.

При этом их вес снизился на целых 100 г — со 144 до 44! Результат пробного запуска поразил даже видавшего виды Джиролами — максимальные обороты Cosworth возросли на тысячу единиц.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Как раз в то время, когда Матти Хольцберг трудился над своим первым торлоновым мотором, Джон Закария Делореан запустил в производство первый пластиковый автомобиль – легендарный DMC-12, кузов которого состоял всего из трех композитных деталей, склеенных между собой.

Перспектива в случае замены блока и головки была впечатляющей, но тут случилось то, чего не ожидал никто. По распоряжению высшего менеджмента Ford Motor Company проект был закрыт, а его финансирование полностью прекращено. Скорее всего, решающим фактором стала невозможность применения результатов работы в конвейерном производстве автомобилей.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Потеря такого мощного партнера, как Ford, расстроила Хольцберга, но он не собирался опускать руки. Год совместной работы дал ему многое — широкую известность, репутацию профи высшего класса и деньги.

На них он продолжил совершенствование своей методики литья деталей из торлона и сумел получить больше десятка патентов.

Многие из них актуальны до сих пор — лицензии на использование технологии Polimotor Research приобрели порядка двадцати крупных компаний, включая Boeing и Lockheed.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

В погоне за удачей

Хольцберг пережил взлет и падение своего проекта достаточно болезненно. Сотрудничество с Amoco сделало его счет больше на пару нулей, но почти все эти деньги были потрачены на новые исследования.

В конце 1980-х ему пришлось вернуться к старому бизнесу — выполнению штучных заказов от небольших гоночных команд и энтузиастов-одиночек.

Хольцберг не бедствовал, так как исправно получал деньги от продажи лицензий на свою технологию, но компанию Polimotor Research он был вынужден ликвидировать. В начале 1990-х сверхлегкими композитными гоночными моторами неожиданно заинтересовались англичане.

Хольцберг с готовностью принимал чеки на предоплату, а вот с исполнением заявок дело обстояло не лучшим образом. Много ли моторов можно сделать в домашнем гараже? Кое-кто из клиентов начал грозить Хольцбергу судебным преследованием — ведь цена готового движка доходила до $20 000.

РЕКЛАМА – ПРОДОЛЖЕНИЕ НИЖЕ

Казалось, удача навсегда отвернулась от Матти. Но он оказался крепким орешком. В течение нескольких лет Хольцберг вернул все полученные авансом деньги за счет продажи лицензий и начал искать серьезных партнеров для нового рывка.

Вертикальный взлет нефтяных котировок и последовавшее ужесточение нормативов по расходу топлива в Америке и Европе снова сделали идею пластикового двигателя актуальной. На этот раз союзником нашего героя оказалась транснациональная химическая корпорация Huntsman Corporation из Хьюстона с 12000 сотрудников и $10 млрд годового оборота.

Huntsman Corporation на протяжении последних 50 лет была поставщиком различных материалов для автомобилей и ясно представляет себе суть проблемы. Все что нужно автогигантам — достаточное количество качественного торлона по хорошей цене и простая технология обработки.

Если себестоимость пластикового мотора не будет превышать среднюю цену рынка на обычные ДВС, то у торлона будет новый шанс. Хольцберг уверен, что на этот раз он его не упустит.

Ссылка на основную публикацию
Adblock
detector